ﻻ يوجد ملخص باللغة العربية
We prove a rigidity result for the anisotropic Laplacian. More precisely, the domain of the problem is bounded by an unknown surface supporting a Dirichlet condition together with a Neumann-type condition which is not translation-invariant. Using a comparison argument, we show that the domain is in fact a Wulff shape. We also consider the more general case when the unknown surface is required to have its boundary on a given conical surface: in such a case, the domain of the problem is bounded by the unknown surface and by a portion of the given conical surface, which supports a homogeneous Neumann condition. We prove that the unknown surface lies on the boundary of a Wulff shape.
In this paper we study the Cauchy problem for overdetermined systems of linear partial differential operators with constant coefficients in some spaces of $omega$-ultradifferentiable functions in the sense of Braun, Meise and Taylor, for non-quasiana
Suppose $F: mathbb{R}^{N} rightarrow [0, +infty)$ be a convex function of class $C^{2}(mathbb{R}^{N} backslash {0})$ which is even and positively homogeneous of degree 1. We denote $gamma_1=inflimits_{uin W^{1, N}_{0}(Omega)backslash {0}}frac{int_{Om
In this paper, we study a partially overdetermined mixed boundary value problem in a half ball. We prove that a domain in which this partially overdetermined problem admits a solution if and only if the domain is a spherical cap intersecting $ss^{n-1
Let $H$ be a norm of ${bf R}^N$ and $H_0$ the dual norm of $H$. Denote by $Delta_H$ the Finsler-Laplace operator defined by $Delta_Hu:=mbox{div},(H( abla u) abla_xi H( abla u))$. In this paper we prove that the Finsler-Laplace operator $Delta_H$ acts
We study the regularity up to the boundary of solutions to the Neumann problem for the fractional Laplacian. We prove that if $u$ is a weak solution of $(-Delta)^s u=f$ in $Omega$, $mathcal N_s u=0$ in $Omega^c$, then $u$ is $C^alpha$ up tp the bound