ﻻ يوجد ملخص باللغة العربية
The scaling laws which relate the peak temperature $T_M$ and volumetric heating rate $E_H$ to the pressure $P$ and length $L$ for static coronal loops were established over 40 years ago; they have proved to be of immense value in a wide range of studies. Here we extend these scaling laws to {it dynamic} loops, where enthalpy flux becomes important to the energy balance, and study impulsive heating/filling characterized by upward enthalpy flows. We show that for collision-dominated thermal conduction, the functional dependencies of the scaling laws are the same as for the static case, when the radiative losses scale as $T^{-1/2}$, but with a different constant of proportionality that depends on the Mach number $M$ of the flow. The dependence on the Mach number is such that the scaling laws for low to moderate Mach number flows are almost indistinguishable from the static case. When thermal conduction is limited by turbulent processes, however, the much weaker dependence of the scattering mean free path (and hence thermal conduction coefficient) on temperature leads to a limiting Mach number for return enthalpy fluxes driven by thermal conduction between the corona and chromosphere.
To understand the nonlinear dynamics of the Parker scenario for coronal heating, long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out. A loop is modeled as a box extended along the direction of
In this study we test 30 variants of 5 physical scaling laws that describe different aspects of solar flares. We express scaling laws in terms of the magnetic potential field energy $E_p$, the mean potential field strength $B_p$, the free energy $E_{
Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation)
Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu
The solar atmosphere is dominated by loops of magnetic flux which connect the multi-million-degree corona to the much cooler chromosphere. The temperature and density structure of quasi-static loops is determined by the continuous flow of energy from