ﻻ يوجد ملخص باللغة العربية
The weak-coupling limits of the gap and critical temperature computed within Eliashberg theory surprisingly deviate from the BCS theory predictions by a factor of $1/sqrt{e}$. Interestingly, however, the ratio of these two quantities agrees for both theories. Motivated by this result, here we investigate the weak-coupling thermodynamics of Eliashberg theory, with a central focus on the free energy, specific heat, and the critical magnetic field. In particular, we numerically calculate the difference between the superconducting and normal-state specific heats, and we find that this quantity differs from its BCS counterpart by a factor of $1/sqrt{e}$, for all temperatures below $T_{c}$. We find that the dimensionless ratio of the specific-heat discontinuity to the normal-state specific heat reduces to the BCS prediction given by $Delta C_{V}(T_{c})/C_{V,n}(T_c)approx1.43$. This gives further evidence to the expectation that all dimensionless ratios tend to their universal values in the weak-coupling limit.
It is shown that the famous Allen -- Dynes asymtotic limit for superconducting transition temperature in very strong coupling region $T_{c}>frac{1}{2pi}sqrt{lambda}Omega_0$ (where $lambdagg 1$ - is Eliashberg - McMillan electron - phonon coupling con
We study the normal-state and superconducting properties of NaFe$_{1-x}$Co$_x$As system by specific heat measurements. Both the normal-state Sommerfeld coefficient and superconducting condensation energy are strongly suppressed in the underdoped and
The standard Eliashberg - McMillan theory of superconductivity is essentially based on the adiabatic approximation. Here we present some simple estimates of electron - phonon interaction within Eliashberg - McMillan approach in non - adiabatic and ev
The Eliashberg theory of superconductivity is based on a dynamical electron-phonon interaction as opposed to a static interaction present in BCS theory. The standard derivation of Eliashberg theory is based on an equation of motion approach, which in
The Eliashberg theory of superconductivity accounts for the fundamental physics of conventional electron-phonon superconductors, including the retardation of the interaction and the effect of the Coulomb pseudopotential, to predict the critical tempe