ﻻ يوجد ملخص باللغة العربية
There are large individual differences in physiological processes, making designing personalized health sensing algorithms challenging. Existing machine learning systems struggle to generalize well to unseen subjects or contexts and can often contain problematic biases. Video-based physiological measurement is not an exception. Therefore, learning personalized or customized models from a small number of unlabeled samples is very attractive as it would allow fast calibrations to improve generalization and help correct biases. In this paper, we present a novel meta-learning approach called MetaPhys for personalized video-based cardiac measurement for contactless pulse and heart rate monitoring. Our method uses only 18-seconds of video for customization and works effectively in both supervised and unsupervised manners. We evaluate our proposed approach on two benchmark datasets and demonstrate superior performance in cross-dataset evaluation with substantial reductions (42% to 44%) in errors compared with state-of-the-art approaches. We have also demonstrated our proposed method significantly helps reduce the bias in skin type.
Many Few-Shot Learning research works have two stages: pre-training base model and adapting to novel model. In this paper, we propose to use closed-form base learner, which constrains the adapting stage with pre-trained base model to get better gener
Adapting pre-trained representations has become the go-to recipe for learning new downstream tasks with limited examples. While literature has demonstrated great successes via representation learning, in this work, we show that substantial performanc
Generative Adversarial Networks (GANs) have shown remarkable performance in image synthesis tasks, but typically require a large number of training samples to achieve high-quality synthesis. This paper proposes a simple and effective method, Few-Shot
Few-Shot Learning (FSL) aims to improve a models generalization capability in low data regimes. Recent FSL works have made steady progress via metric learning, meta learning, representation learning, etc. However, FSL remains challenging due to the f
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data. Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different fe