ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust Attenuation Curves at z $sim$ 0.8 from LEGA-C: Precise Constraints on the Slope and 2175$AA$ Bump Strength

335   0   0.0 ( 0 )
 نشر من قبل Ivana Barisic
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel approach to measure the attenuation curves of 485 individual star-forming galaxies with M$_*$ $>$ 10$^{10}$ M$_{odot}$ based on deep optical spectra from the VLT/VIMOS LEGA-C survey and multi-band photometry in the COSMOS field. Most importantly, we find that the attenuation curves in the rest-frame $3000-4500$A range are typically almost twice as steep as the Milky Way, LMC, SMC, and Calzetti attenuation curves, which is in agreement with recent studies of the integrated light of present-day galaxies. The attenuation at $4500$A and the slope strongly correlate with the galaxy inclination: face-on galaxies show less attenuation and steeper curves compared to edge-on galaxies, suggesting that geometric effects dominate observed variations in attenuation. Our new method produces $2175$A UV bump detections for 260 individual galaxies. Even though obvious correlations between UV bump strength and global galaxy properties are absent, strong UV bumps are most often seen in face-on, lower-mass galaxies (10 $<$ log$_{10}$(M$_*$/M$_{odot}$) $<$ 10.5) with low overall attenuation. Finally, we produce a typical attenuation curve for star-forming galaxies at $zsim0.8$; this prescription represents the effect of dust on the integrated spectral energy distributions of high-redshift galaxies more accurately than commonly used attenuation laws.



قيم البحث

اقرأ أيضاً

We present a study of the extinction and depletion-derived dust properties of gamma-ray burst (GRB) absorbers at $1<z<3$ showing the presence of neutral carbon (ion{C}{I}). By modelling their parametric extinction laws, we discover a broad range of d ust models characterizing the GRB ion{C}{I} absorption systems. In addition to the already well-established correlation between the amount of ion{C}{I} and visual extinction, $A_V$, we also observe a correlation with the total-to-selective reddening, $R_V$. All three quantities are also found to be connected to the presence and strength of the 2175,{AA} dust extinction feature. While the amount of ion{C}{I} is found to be correlated with the SED-derived dust properties, we do not find any evidence for a connection with the depletion-derived dust content as measured from [Zn/Fe] and $N$(Fe)$_{rm dust}$. To reconcile this, we discuss a scenario where the observed extinction is dominated by the composition of dust particles confined in the molecular gas-phase of the ISM. We argue that since the depletion level trace non-carbonaceous dust in the ISM, the observed extinction in GRB ion{C}{I} absorbers is primarily produced by carbon-rich dust in the molecular cloud and is therefore only observable in the extinction curves and not in the depletion patterns. This also indicates that the 2175,{AA} dust extinction feature is caused by dust and molecules in the cold and molecular gas-phase. This scenario provides a possible resolution to the discrepancy between the depletion- and SED-derived amounts of dust in high-$z$ absorbers.
We use deep, spatially resolved spectroscopy from the LEGA-C Survey to study radial variations in the stellar population of 17 spectroscopically-selected post-starburst (PSB) galaxies. We use spectral fitting to measure two Lick indices, $H{delta}_A$ and $Fe4383$, and find that, on average, PSB galaxies have radially decreasing $H{delta}_A$ and increasing $Fe4383$ profiles. In contrast, a control sample of quiescent, non-PSB galaxies in the same mass range shows outwardly increasing $H{delta}_A$ and decreasing $Fe4383$. The observed gradients are weak ($approx-0.2$ r{A}/$R_e$), mainly due to seeing convolution. A two-SSP model suggests intrinsic gradients are as strong as observed in local PSB galaxies ($approx -0.8$ r{A}$/R_e$). We interpret these results in terms of inside-out growth (for the bulk of the quiescent population) vs star formation occurring last in the centre (for PSB galaxies). At $zapprox0.8$, central starbursts are often the result of gas-rich mergers, as evidenced by the high fraction of PSB galaxies with disturbed morphologies and tidal features (40%). Our results provide additional evidence for multiple paths to quiescence: a standard path, associated with inside-out disc formation and with gradually decreasing star-formation activity, without fundamental structural transformation, and a fast path, associated with centrally-concentrated starbursts, leaving an inverse age gradient and smaller half-light radius.
We present stellar rotation curves and velocity dispersion profiles for 104 quiescent galaxies at $z=0.6-1$ from the Large Early Galaxy Astrophysics Census (LEGA-C) spectroscopic survey. Rotation is typically probed across 10-20kpc, or to an average of 2.7${rm R_e}$. Combined with central stellar velocity dispersions ($sigma_0$) this provides the first determination of the dynamical state of a sample selected by a lack of star formation activity at large lookback time. The most massive galaxies ($M_{star}>2times10^{11},M_{odot}$) generally show no or little rotation measured at 5kpc ($|V_5|/sigma_0<0.2$ in 8 of 10 cases), while ${sim}64%$ of less massive galaxies show significant rotation. This is reminiscent of local fast- and slow-rotating ellipticals and implies that low- and high-redshift quiescent galaxies have qualitatively similar dynamical structures. We compare $|V_5|/sigma_0$ distributions at $zsim0.8$ and the present day by re-binning and smoothing the kinematic maps of 91 low-redshift quiescent galaxies from the CALIFA survey and find evidence for a decrease in rotational support since $zsim1$. This result is especially strong when galaxies are compared at fixed velocity dispersion; if velocity dispersion does not evolve for individual galaxies then the rotational velocity at 5kpc was an average of ${94pm22%}$ higher in $zsim0.8$ quiescent galaxies than today. Considering that the number of quiescent galaxies grows with time and that new additions to the population descend from rotationally-supported star-forming galaxies, our results imply that quiescent galaxies must lose angular momentum between $zsim1$ and the present, presumably through dissipationless merging, and/or that the mechanism that transforms star-forming galaxies also reduces their rotational support.
We present spatially resolved stellar kinematics for 797 $z=0.6-1$ galaxies selected from the LEGA-C survey and construct axisymmetric Jeans models to quantify their dynamical mass and degree of rotational support. The survey is $K_s$-band selected, irrespective of color or morphological type, and allows for a first assessment of the stellar dynamical structure of the general $L^*$ galaxy population at large lookback time. Using light profiles from Hubble Space Telescope imaging as a tracer, our approach corrects for observational effects (seeing convolution and slit geometry), and uses well-informed priors on inclination, anisotropy and a non-luminous mass component. Tabulated data include total mass estimates in a series of spherical apertures (1, 5, and 10 kpc; 1$times$ and 2$times$re), as well as rotational velocities, velocity dispersions and anisotropy. We show that almost all star-forming galaxies and $sim$50% of quiescent galaxies are rotation-dominated, with deprojected $V/sigmasim1-2$. Revealing the complexity in galaxy evolution, we find that the most massive star-forming galaxies are among the most rotation-dominated, and the most massive quiescent galaxies among the least rotation-dominated galaxies. These measurements set a new benchmark for studying galaxy evolution, using stellar dynamical structure for galaxies at large lookback time. Together with the additional information on stellar population properties from the LEGA-C spectra, the dynamical mass and $V/sigma$ measurements presented here create new avenues for studying galaxy evolution at large lookback time.
The 2175 {AA} ultraviolet (UV) extinction bump in interstellar medium (ISM) of the Milky Way was discovered in 1965. After intensive exploration of more than a half century, however, its exact origin still remains a big conundrum that is being debate d. Here we propose a mixture model by which the extinction bump in ISM is argued possibly relevant to the clusters of hydrogenated T-carbon (HTC) molecules (C40H16) that have intrinsically a sharp absorption peak at the wavelength 2175 {AA}. By linearly combining the calculated absorption spectra of HTC mixtures, graphite, MgSiO3 and Fe2SiO4, we show that the UV extinction curves of optional six stars can be nicely fitted. This present work poses an alternative explanation toward understanding the physical origin of the 2175 {AA} extinction bump in ISM of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا