ترغب بنشر مسار تعليمي؟ اضغط هنا

$gammagamma$ Beam-beam Parameter Study for a 3 TeV PWFA Linear Collider

111   0   0.0 ( 0 )
 نشر من قبل Jian Bin Ben Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our beam-beam parameter study using beam-beam simulations and PWFA (particle-driven plasma acceleration) beam parameters indicates that at 3 TeV, for examined electron beam lengths ${2~mumathrm{m}leqsigma_zleq 10~mumathrm{m}}$, the total luminosity, as well as the sharpness of the luminosity spectrum for a $gammagamma$ collider are independent of the beam length of the electron beams used to scatter the photons, given that the hourglass effect is avoided. The total luminosity can consequently be maximised by minimising the horizontal and vertical beta functions $beta_{x,y}^*$ at the interaction point. Furthermore, we performed background studies in GUINEA-PIG where we considered the smallest currently achievable $beta_{x,y}^*$ combined with PWFA beam parameters. Simulations results show that our proposed parameter set for a 3 TeV PWFA $gammagamma$ collider is able to deliver a total luminosity significantly higher than a $gammagamma$ collider based on CLIC parameters, but gives rise to more background particles.



قيم البحث

اقرأ أيضاً

We perform a beam-beam parameter study for a TeV-scale PWFA (particle-driven plasma wakefield acceleration) $mathrm{e}^+$$mathrm{e}^-$ linear collider using GUINEA-PIG simulations. The study shows that the total luminosity follows the $1/sqrt{sigma_z }$-scaling predicted by beamstrahlung theory, where $sigma_z$ is the rms beam length, which is advantageous for PWFA, as short beam lengths are preferred. We also derive a parameter set for a 3 TeV PWFA linear collider with main beam parameters optimised for luminosity and luminosity spread introduced by beamstrahlung. Lastly, the study also compare the performance for scenarios with reduced positron beam charge at 3 TeV and 14 TeV with CLIC parameters.
Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small energy spread and small emittance dilution (required to achieve luminosity). The PWFA-LC concept presented in this document is an attempt to find the best design that takes advantage of the PWFA, identify the critical parameters to be achieved and eventually the necessary R&D to address their feasibility. It best benefits from the extensive R&D that has been performed for conventional rf linear colliders during the last twenty years, especially ILC[ ] and CLIC[ ], with a potential for a comparably lower power consumption and cost.
156 - K. Cornelis 2014
During the proton-anti proton collider run several experiments were carried out in order to understand the effect of the beam-beam interaction on backgrounds and lifetimes. In this talk a selection of these experiments will be presented. From these e xperiments, the importance of relative beam sizes and tune ripple could be demonstrated.
Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long , pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.
130 - Mikhail Zobov 2010
In order to achieve luminosities significantly higher than in existing machines, future storage-ring based colliders will need to operate in novel parameter regimes combining ultra-low emittance, large Piwinski angle and high bunch charge; implementa tion of techniques such as a crab waist will add further challenges. Understanding the beam-beam interaction in these situations will be essential for the design of future very high luminosity colliders. Recent developments in modeling tools for studying beam-beam effects, capable of investigating the relevant regimes, will be discussed and examples, including tests with crab waist collisions in DAFNE, will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا