ﻻ يوجد ملخص باللغة العربية
An interesting deformation of the Jackiw-Teitelboim (JT) gravity has been proposed by Witten by adding a potential term $U(phi)$ as a self-coupling of the scalar dilaton field. During calculating the path integral over fields, a constraint comes from integration over $phi$ as $R(x)+2=2alpha delta(vec{x}-vec{x})$. The resulting Euclidean metric suffered from a conical singularity at $vec{x}=vec{x}$. A possible geometry modeled locally in polar coordinates $(r,varphi)$ by $ds^2=dr^2+r^2dvarphi^2,varphi cong varphi+2pi-alpha$. In this letter we showed that there exists another family of exact geometries for arbitrary values of the $alpha$. A pair of exact solutions are found for the case of $alpha=0$. One represents the static patch of the AdS and the other one is the non static patch of the AdS metric. These solutions were used to construct the Green function for the inhomogeneous model with $alpha eq 0$. We address a type of the phase transition between different patches of the AdS in theory because of the discontinuity in the first derivative of the metric at $x=x$. We extended the study to the exact space of metrics satisfying the constraint $R(x)+2=2sum_{i=1}^{k}alpha_idelta^{(2)}(x-x_i)$ as a modulo diffeomorphisms for an arbitrary set of the deficit parameters $(alpha_1,alpha_2,..,alpha_k)$. The space is the moduli space of Riemann surfaces of genus $g$ with $k$ conical singularities located at $x_k$ denoted by $mathcal{M}_{g,k}$.
In this note we study the $1+1$ dimensional Jackiw-Teitelboim gravity in Lorentzian signature, explicitly constructing the gauge-invariant classical phase space and the quantum Hilbert space and Hamiltonian. We also semiclassically compute the Hartle
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in
We revisit a deformed Jackiw-Teitelboim model with a hyperbolic dilaton potential, constructed in the preceding work [arXiv:1701.06340]. Several solutions are discussed in a series of the subsequent papers, but all of them are pathological because of
We study the theory of Jackiw-Teitelboim gravity with generalized dilaton potential on Euclidean two-dimensional negatively curved backgrounds. The effect of the generalized dilaton potential is to induce a conical defect on the two-dimensional manif
We construct the non-relativistic and Carrolli