ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological terms and anomaly matching in effective field theories on $mathbb{R}^3times S^1$: I. Abelian symmetries and intermediate scales

76   0   0.0 ( 0 )
 نشر من قبل F. David Wandler
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explicitly calculate the topological terms that arise in IR effective field theories for $SU(N)$ gauge theories on $mathbb{R}^3 times S^1$ by integrating out all but the lightest modes. We then show how these terms match all global-symmetry t Hooft anomalies of the UV description. We limit our discussion to theories with abelian 0-form symmetries, namely those with one flavour of adjoint Weyl fermion and one or zero flavours of Dirac fermions. While anomaly matching holds as required, it takes a different form than previously thought. For example, cubic- and mixed-$U(1)$ anomalies are matched by local background-field-dependent topological terms (background TQFTs) instead of chiral-lagrangian Wess-Zumino terms. We also describe the coupling of 0-form and 1-form symmetry backgrounds in the magnetic dual of super-Yang-Mills theory in a novel way, valid throughout the RG flow and consistent with the monopole-instanton t Hooft vertices. We use it to discuss the matching of the mixed chiral-center anomaly in the magnetic dual.



قيم البحث

اقرأ أيضاً

We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$bet a_0$ approximation as a conventional tool to analyze the renormalon, in which only Feynman diagrams that dominate in the large-$n_W$ limit are considered while the coefficient of the vacuum polarization is set by hand to the one-loop beta function~$beta_0=11/3-2n_W/3$. In the large~$N$ limit within the large-$beta_0$ approximation, the W-boson, which acquires the twisted Kaluza--Klein momentum, produces the renormalon ambiguity corresponding to the Borel singularity at~$u=2$. This provides an example that the system in the compactified space~$mathbb{R}^3times S^1$ possesses the renormalon ambiguity identical to that in the uncompactified space~$mathbb{R}^4$. We also discuss the subtle issue that the location of the Borel singularity can change depending on the order of two necessary operations.
We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite~$N$, a logarithmic factor in the vacuum polarization of the photon (the gauge boson associated with the Cartan generators of~$SU(N)$) disappears under the $S^1$~compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite~$N$. This result generalizes the observation made by Anber and~Sulejmanpasic [J. High Energy Phys. textbf{1501}, 139 (2015)] for $N=2$ and~$3$ to arbitrary finite~$N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification~$Rtoinfty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in~$mathbb{R}^4$. We term this ambiguity in the momentum integration renormalon precursor. The emergence of the IR renormalon ambiguity in~$mathbb{R}^4$ under the decompactification can be naturally understood with this notion.
We study confining strings in ${cal{N}}=1$ supersymmetric $SU(N_c)$ Yang-Mills theory in the semiclassical regime on $mathbb{R}^{1,2} times mathbb{S}^1$. Static quarks are expected to be confined by double strings composed of two domain walls - which are lines in $mathbb{R}^2$ - rather than by a single flux tube. Each domain wall carries part of the quarks chromoelectric flux. We numerically study this mechanism and find that double-string confinement holds for strings of all $N$-alities, except for those between fundamental quarks. We show that, for $N_c ge 5$, the two domain walls confining unit $N$-ality quarks attract and form non-BPS bound states, collapsing to a single flux line. We determine the $N$-ality dependence of the string tensions for $2 le N_c le 10$. Compared to known scaling laws, we find a weaker, almost flat $N$-ality dependence, which is qualitatively explained by the properties of BPS domain walls. We also quantitatively study the behavior of confining strings upon increasing the $mathbb{S}^1$ size by including the effect of virtual $W$-bosons and show that the qualitative features of double-string confinement persist.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b oundary conditions. In our large~$N$ limit, the combination $Lambda R$, where $Lambda$ is the dynamical scale and $R$~is the $S^1$ radius, is kept fixed (we set $Lambda Rll1$ so that the perturbative expansion with respect to the coupling constant at the mass scale~$1/R$ is meaningful). We extract the perturbative part from the large-$N$ expression of the gluon condensate and obtain the corresponding Borel transform~$B(u)$. For~$mathbb{R}times S^1$, we find that the Borel singularity at~$u=2$, which exists in the system on the uncompactified~$mathbb{R}^2$ and corresponds to twice the minimal bion action, disappears. Instead, an unfamiliar renormalon singularity emph{emerges/} at~$u=3/2$ for the compactified space~$mathbb{R}times S^1$. The semi-classical interpretation of this peculiar singularity is not clear because $u=3/2$ is not dividable by the minimal bion action. It appears that our observation for the system on~$mathbb{R}times S^1$ prompts reconsideration on the semi-classical bion picture of the infrared renormalon.
In this contribution we revisit the lattice discretization of the topological charge for abelian lattice field theories. The construction departs from an initially non-compact discretization of the gauge fields and after absorbing $2pi$ shifts of the gauge fields leads to a generalized Villain action that also includes the topological term. The topological charge in two, as well as in four dimensions can be expressed in terms of only the integer-valued Villain variables. We test various properties of the topological charge and in particular analyze the index theorem in two dimensions and discuss the Witten effect in 4-d. As an application of our formulation we present results from a simulation of the 2-d U(1) gauge Higgs model at vacuum angle $theta = pi$, where we use a suitable worldline/worldsheet representation to overcome the complex action problem at non-zero $theta$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا