ﻻ يوجد ملخص باللغة العربية
As suggested by the swampland conjectures, de Sitter (dS) space might be highly unstable if it exists at all. During inflation, the short-lived dS states will decay through a cascade of the first-order phase transition (PT). We find that the gravitational waves (GWs) yielded by such a PT will be reddened by subsequent dS expansion, which may result in a slightly red-tilt stochastic GWs background at low-frequency band, compatible with the NANOGrav 12.5-yr result.
The NANOGrav pulsar timing array experiment reported evidence for a stochastic common-spectrum process affecting pulsar timing residuals in its 12.5-year dataset, which might be interpreted as the first detection of a stochastic gravitational wave ba
We develop the formalism for computing gravitational corrections to vacuum decay from de Sitter space as a sub-Planckian perturbative expansion. Non-minimal coupling to gravity can be encoded in an effective potential. The Coleman bounce continuously
In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invaria
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full
Isocurvature perturbations naturally occur in models of inflation consisting of more than one scalar field. In this paper we calculate the spectrum of isocurvature perturbations generated at the end of inflation for three different inflationary model