ﻻ يوجد ملخص باللغة العربية
In this short note, we use a unified method to consider the gradient estimates of the positive solution to the following nonlinear elliptic equation $Delta u + au^{p+1}=0$ defined on a complete noncompact Riemannian manifold $(M, g)$ where $a > 0$ and $ p <frac{4}{n}$ or $a < 0$ and $p >0$ are two constants. For the case $a>0$, this improves considerably the previous known results except for the cases $dim(M)=4$ and supplements the results for the case $dim(M)leq 2$. For the case $a<0$ and $p>0$, we also improve considerably the previous related results. When the Ricci curvature of $(M,g)$ is nonnegative, we also obtain a Liouville-type theorem for the above equation.
In this paper, we consider the gradient estimates of the positive solutions to the following equation defined on a complete Riemannian manifold $(M, g)$ $$Delta u + au(log u)^{p}+bu=0,$$ where $a, bin mathbb{R}$ and $p$ is a rational number with $p=f
In this paper, we consider a class of important nonlinear elliptic equations $$Delta u + a(x)ulog u + b(x)u = 0$$ on a collapsed complete Riemannian manifold and its parabolic counterpart under integral curvature conditions, where $a(x)$ and $b(x)$ a
We prove several Liouville theorems for F-harmonic maps from some complete Riemannian manifolds by assuming some conditions on the Hessian of the distance function, the degrees of F(t) and the asymptotic behavior of the map at infinity. In particular
We study harmonic functions for general Dirichlet forms. First we review consequences of Fukushimas ergodic theorem for the harmonic functions in the domain of the $ L^{p} $ generator. Secondly we prove analogues of Yaus and Karps Liouville theorems
We prove some Liouville type theorems on smooth compact Riemannian manifolds with nonnegative sectional curvature and strictly convex boundary. This gives a nonlinear generalization in low dimension of the recent sharp lower bound of the first Steklo