ﻻ يوجد ملخص باللغة العربية
Recently discovered advanced materials, such as heavy fermions, frequently exhibit a rich phase diagram suggesting the presence of different competing interactions. A unified description of the origin of these multiple interactions, albeit very important for the comprehension of such materials is, in general not available. It would be therefore very useful to have a simple model where the common source of different interactions could be possibly traced back. In this work we consider a system consisting in a set of localized spins on a square lattice with antiferromagnetic nearest neighbors interactions and itinerant electrons, which are assumed to be Dirac-like and interact with the localized spins through a Kondo magnetic interaction. This system is conveniently described by the Spin-Fermion model, which we use in order to determine the effective interactions among the itinerant electrons. By integrating out the localized degrees of freedom we obtain a set of different interactions, which includes: a BCS-like superconducting term, a Nambu-Jona-Lasinio-like, excitonic term and a spin-spin magnetic term. The resulting phase diagram is investigated by evaluation of the mean-field free-energy as a function of the relevant order parameters. This shows the competition of the above interactions, depending on the temperature, chemical potential and coupling constants.
We evaluate the effective interactions in a fluid of electrons moving in a plane, on the approach to the quantum phase transition from the paramagnetic to the fully spin-polarized phase that has been reported from Quantum Monte Carlo runs. We use the
We study the quantum many-body ground states of electrons on the half-filled honeycomb lattice with short- and long-ranged density-density interactions as a model for graphene. To this end, we employ the recently developed truncated-unity functional
Magnetization and heat capacity measurements of ternary rare earth intermetallic compound GdNiAl3 demonstrate para to ferromagnetic transition at Tc=165.5K. In addition multiple short range magnetic transitions observed below Tc are suggestive of com
CeNi9Ge4 exhibits outstanding heavy fermion features with remarkable non-Fermi- liquid behavior which is mainly driven by single-ion effects. The substitution of Ni by Cu causes a reduction of both, the RKKY coupling and Kondo interaction, coming alo
We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performin