ﻻ يوجد ملخص باللغة العربية
We demonstrate the efficacy of a Bayesian statistical inversion framework for reconstructing the likely characteristics of large pre-instrumentation earthquakes from historical records of tsunami observations. Our framework is designed and implemented for the estimation of the location and magnitude of seismic events from anecdotal accounts of tsunamis including shoreline wave arrival times, heights, and inundation lengths over a variety of spatially separated observation locations. As an initial test case we use our framework to reconstruct the great 1852 earthquake and tsunami of eastern Indonesia. Relying on the assumption that these observations were produced by a subducting thrust event, the posterior distribution indicates that the observables were the result of a massive mega-thrust event with magnitude near 8.8 Mw and a likely rupture zone in the north-eastern Banda arc. The distribution of predicted epicentral locations overlaps with the largest major seismic gap in the region as indicated by instrumentally recorded seismic events. These results provide a geologic and seismic context for hazard risk assessment in coastal communities experiencing growing population and urbanization in Indonesia. In addition, the methodology demonstrated here highlights the potential for applying a Bayesian approach to enhance understanding of the seismic history of other subduction zones around the world.
Hazardous tsunamis are known to be generated predominantly at subduction zones by large earthquakes on dip (vertical)-slip faults. However, a moment magnitude ($M_{w}$) 7.5 earthquake on a strike (lateral)-slip fault in Sulawesi (Indonesia) in 2018 g
In line of the intermediate-term monitoring of seismic activity aimed at prediction of the world largest earthquakes the seismic dynamics of the Earths lithosphere is analysed as a single whole, which is the ultimate scale of the complex hierarchical
We present a method for locating the seismic event epicenters without assuming an Earth model of the seismic velocity structure, based on the linear relationship between $log R$ and $log t$ (where $R$ is the radius of spherical P wave propagated outw
We base our study on the statistical analysis of the Rigan earthquake 2010 December 20, which consists of estimating the earthquake network by means of virtual seismometer technique, and also considering the avalanche-type dynamics on top of this com
Plate motions are governed by equilibrium between basal and edge forces. Great earthquakes may induce differential static stress changes across tectonic plates, enabling a new equilibrium state. Here we consider the torque balance for idealized circu