ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian inference of dense matter EOS encapsulating a first-order hadron-quark phase transition from observables of canonical neutron stars

72   0   0.0 ( 0 )
 نشر من قبل Bao-An Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Purpose:] We infer the posterior probability distribution functions (PDFs) and correlations of nine parameters characterizing the EOS of dense neutron-rich matter encapsulating a first-order hadron-quark phase transition from the radius data of canonical NSs reported by LIGO/VIRGO, NICER and Chandra Collaborations. We also infer the quark matter (QM) mass fraction and its radius in a 1.4 M$_{odot}$ NS and predict their values in more massive NSs. [Method:] Meta-modelings are used to generate both hadronic and QM EOSs in the Markov-Chain Monte Carlo sampling process within the Bayesian statistical framework. An explicitly isospin-dependent parametric EOS for the $npemu$ matter in NSs at $beta$ equilibrium is connected through the Maxwell construction to the QM EOS described by the constant speed of sound (CSS) model of Alford, Han and Prakash. [Results:] (1) The most probable values of the hadron-quark transition density $rho_t/rho_0$ and the relative energy density jump there $Deep/ep_t$ are $rho_t/rho_0=1.6^{+1.2}_{-0.4}$ and $Deep/ep_t=0.4^{+0.20}_{-0.15}$ at 68% confidence level, respectively. The corresponding probability distribution of QM fraction in a 1.4 M$_{odot}$ NS peaks around 0.9 in a 10 km sphere. Strongly correlated to the PDFs of $rho_t$ and $Deep/ep_t$, the PDF of the QM speed of sound squared $cQMsq/c^2$ peaks at $0.95^{+0.05}_{-0.35}$, and the total probability of being less than 1/3 is very small. (2) The correlations between PDFs of hadronic and QM EOS parameters are very weak. [Conclusions:] The available astrophysical data considered together with all known EOS constraints from theories and terrestrial nuclear experiments prefer the formation of a large volume of QM even in canonical NSs.



قيم البحث

اقرأ أيضاً

127 - F. Weber 2019
In the first part of this paper, we investigate the possible existence of a structured hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark pasta phase, consists of spherical blob, rod, and slab rare pha se geometries. Particular emphasis is given to modeling the size othis phase in rotating neutron stars. We use the relativistic mean-field theory to model hadronic matter and the non-local three-flavor Nambu-Jona-Lasinio model to describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor Polyakov-Nambu-Jona-Lasinio model which includes the t Hooft (quark flavor mixing) term. It is found that this term leads to non-negligible changes in the particle composition of (proto) neutron stars made of hadron-quark matter.
A recent solution of the hyperon puzzle by a first order phase transition to color superconducting quark matter is revisited in order to replace the Maxwell construction by an interpolation method which describes a mixed phase. To do this, we apply f or the first time the finite-range polynomial interpolation method for constructing a transition between hadronic and quark matter phases to the situation that is characterized in the literature as the reconfinement problem. For the description of the hadronic phase the lowest order constrained variational method is used while for the quark phase the nonlocal Nambu-Jona-Lasinio model with constant (model nlNJLA) and with density-dependent (model nlNJLB) parameters is employed. Applying the replacement interpolation method to both quark matter models results in a hybrid equation of state that allows a coexistence of nuclear matter, hypernuclear matter and quark matter in a mixed phase between the pure hadronic and quark phases which can also be realized in the structure of the corresponding hybrid star sequences. The predicted hybrid stars fulfill the constraints on the mass-radius relation for neutron stars obtained from recent observations.
372 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ($lesssim 10^9$ K) and quark fractions ($lesssim 30%$), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.
We review the equation of state (EoS) models covering a large range of temperatures, baryon number densities and electron fractions presently available on the textsc{CompOSE} database. These models are intended to be directly usable within numerical simulations of core-collapse supernovae, binary neutron star mergers and proto-neutron star evolution. We discuss their compliance with existing constraints from astrophysical observations and nuclear data. For a selection of purely nucleonic models in reasonable agreement with the above constraints, after discussing the properties of cold matter, we review thermal properties for thermodynamic conditions relevant for core-collapse supernovae and binary neutron star mergers. We find that the latter are strongly influenced by the density dependence of the nucleon effective mass. The selected bunch of models is used to investigate the EoS dependence of hot star properties, where entropy per baryon and electron fraction profiles are inspired from proto-neutron star evolution. The $Gamma$-law analytical thermal EoS used in many simulations is found not to describe well these thermal properties of the EoS. However, it may offer a fair description of the structure of hot stars whenever thermal effects on the baryonic part are small, as shown here for proto-neutron stars starting from several seconds after bounce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا