ﻻ يوجد ملخص باللغة العربية
MN112 is the Galactic luminous blue variable (LBV) candidate with circumstellar nebula. P Cygni is the first discovered LBV, which was recorded during major eruptions in the 17th century. The stars have similar spectra with strong emission hydrogen lines, He I, N II, Si II, and Fe III lines. We present results of the spectroscopic analysis and modeling of MN112 spectra. We obtained main stellar parameters and chemical abundances of MN112 and compared them with those of P Cygni. Atmosphere models were calculated using non-LTE radiative transfer code CMFGEN. We have used spectra of MN112 obtained with the 3.5-m telescope at the Observatory of Calar Alto and 3.5-m ARC telescope at the Apache Point Observatory. P Cygni spectra were taken with the 6-m BTA telescope. We have found the best-fit of the observed spectrum with the model at temperature $T_{text{eff}}= 15,200$K, clumping-corrected mass-loss rate $dot{M}f^{-0.5}=5.74 times 10^{-5}, M_{odot}text{yr}^{-1}$, filling-factor $f=0.1$, luminosity $L=5.77 times 10^5, L_{odot}$ for MN112. The ratio of helium to hydrogen He/H is 0.27 (by the number of atoms) with nitrogen overabundance ($X_text{N}/ X_{odot} = 6.8$) and the underabundance of carbon ($X_text{C}/ X_{odot} < 0.1$).
We report the discovery of a new Galactic candidate Luminous Blue Variable (cLBV) via detection of an infrared circular nebula and follow-up spectroscopy of its central star. The nebula, MN112, is one of many dozens of circular nebulae detected at $2
Empirical stellar spectral libraries have applications in both extragalactic and stellar studies, and they have an advantage over theoretical libraries because they naturally include all relevant chemical species and physical processes. During recent
We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single
The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action.
Gaia Photometric Science Alerts (GPSA) publishes Gaia G magnitudes and Blue Photometer (BP) and Red Photometer (RP) low-resolution epoch spectra of transient events. 27 high-resolution spectra from Gaias Radial Velocity Spectrometer (RVS) of 12 GPSAs