ﻻ يوجد ملخص باللغة العربية
In this note, we describe a simple approach to obtain a differentially private algorithm for k-clustering with nearly the same multiplicative factor as any non-private counterpart at the cost of a large polynomial additive error. The approach is the combination of a simple geometric observation independent of privacy consideration and any existing private algorithm with a constant approximation.
Given a data set of size $n$ in $d$-dimensional Euclidean space, the $k$-means problem asks for a set of $k$ points (called centers) so that the sum of the $ell_2^2$-distances between points of a given data set of size $n$ and the set of $k$ centers
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that
We introduce a new $(epsilon_p, delta_p)$-differentially private algorithm for the $k$-means clustering problem. Given a dataset in Euclidean space, the $k$-means clustering problem requires one to find $k$ points in that space such that the sum of s
Densest subgraph detection is a fundamental graph mining problem, with a large number of applications. There has been a lot of work on efficient algorithms for finding the densest subgraph in massive networks. However, in many domains, the network is
Large data collections required for the training of neural networks often contain sensitive information such as the medical histories of patients, and the privacy of the training data must be preserved. In this paper, we introduce a dropout technique