ترغب بنشر مسار تعليمي؟ اضغط هنا

Bottom-up construction of dynamic density functional theories for inhomogeneous polymer systems from microscopic simulations

45   0   0.0 ( 0 )
 نشر من قبل Friederike Schmid
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and compare different strategies to construct dynamic density functional theories (DDFTs) for inhomogeneous polymer systems close to equilibrium from microscopic simulation trajectories. We focus on the systematic construction of the mobility coefficient, $Lambda(r,r)$, which relates the thermodynamic driving force on monomers at position $r$ to the motion of monomers at position $r$. A first approach based on the Green-Kubo formalism turns out to be impractical because of a severe plateau problem. Instead, we propose to extract the mobility coefficient from an effective characteristic relaxation time of the single chain dynamic structure factor. To test our approach, we study the kinetics of ordering and disordering in diblock copolymer melts. The DDFT results are in very good agreement with the data from corresponding fine-grained simulations.



قيم البحث

اقرأ أيضاً

The Dynamic Monte Carlo (DMC) method is an established molecular simulation technique for the analysis of the dynamics in colloidal suspensions. An excellent alternative to Brownian Dynamics or Molecular Dynamics simulation, DMC is applicable to syst ems of spherical and/or anisotropic particles and to equilibrium or out-of-equilibrium processes. In this work, we present a theoretical and methodological framework to extend DMC to the study of heterogeneous systems, where the presence of an interface between coexisting phases introduces an additional element of complexity in determining the dynamic properties. In particular, we simulate a Lennard-Jones fluid at the liquid-vapor equilibrium and determine the diffusion coefficients in the bulk of each phase and across the interface. To test the validity of our DMC results, we also perform Brownian Dynamics simulations and unveil an excellent quantitative agreement between the two simulation techniques.
We propose a dynamic coarse-graining (CG) scheme for mapping heterogeneous polymer fluids onto extremely CG models in a dynamically consistent manner. The idea is to use as target function for the mapping a wave-vector dependent mobility function der ived from the single-chain dynamic structure factor, which is calculated in the microscopic reference system. In previous work, we have shown that dynamic density functional calculations based on this mobility function can accurately reproduce the order/disorder kinetics in polymer melts, thus it is a suitable starting point for dynamic mapping. To enable the mapping over a range of relevant wave vectors, we propose to modify the CG dynamics by introducing internal friction parameters that slow down the CG monomer dynamics on local scales, without affecting the static equilibrium structure of the system. We illustrate and discuss the method using the example of infinitely long linear Rouse polymers mapped onto ultrashort CG chains. We show that our method can be used to construct dynamically consistent CG models for homopolymers with CG chain length N=4, whereas for copolymers, longer CG chain lengths are necessary
We present a theoretical approach to scale the artificially fast dynamics of simulated coarse-grained polymer liquids down to its realistic value. As coarse-graining affects entropy and dissipation, two factors enter the rescaling: inclusion of intra molecular vibrational degrees of freedom, and rescaling of the friction coefficient. Because our approach is analytical, it is general and transferable. Translational and rotational diffusion of unentangled and entangled polyethylene melts, predicted from mesoscale simulations of coarse-grained polymer melts using our rescaling procedure, are in quantitative agreement with united atom simulations and with experiments.
We have developed a new technique to measure viscoelasticity in soft materials such as polymer solutions, by monitoring thermal fluctuations of embedded probe particles using laser interferometry in a microscope. Interferometry allows us to obtain po wer spectra of fluctuating beads from 0.1 Hz to 20 kHz, and with sub-nanometer spatial resolution. Using linear response theory, we determined the frequency-dependent loss and storage shear moduli up to frequencies on the order of a kHz. Our technique measures local values of the viscoelastic response, without actively straining the system, and is especially suited to soft biopolymer networks. We studied semiflexible F-actin solutions and, as a control, flexible polyacrylamide (PAAm) gels, the latter close to their gelation threshold. With small particles, we could probe the transition from macroscopic viscoelasticity to more complex microscopic dynamics. In the macroscopic limit we find shear moduli at 0.1 Hz of G=0.11 +/- 0.03 Pa and 0.17 +/- 0.07 Pa for 1 and 2 mg/ml actin solutions, close to the onset of the elastic plateau, and scaling behavior consistent with G(omega) as omega^(3/4) at higher frequencies. For polyacrylamide we measured plateau moduli of 2.0, 24, 100 and 280 Pa for crosslinked gels of 2, 2.5, 3 and 5% concentration (weight/volume) respectively, in agreement to within a factor of two with values obtained from conventional rheology. We also found evidence for scaling of G(omega) as omega^(1/2), consistent with the predictions of the Rouse model for flexible polymers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا