ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Temporal Deep Generative Model for Radar HRRP Target Recognition

154   0   0.0 ( 0 )
 نشر من قبل Dandan Guo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a recurrent gamma belief network (rGBN) for radar automatic target recognition (RATR) based on high-resolution range profile (HRRP), which characterizes the temporal dependence across the range cells of HRRP. The proposed rGBN adopts a hierarchy of gamma distributions to build its temporal deep generative model. For scalable training and fast out-of-sample prediction, we propose the hybrid of a stochastic-gradient Markov chain Monte Carlo (MCMC) and a recurrent variational inference model to perform posterior inference. To utilize the label information to extract more discriminative latent representations, we further propose supervised rGBN to jointly model the HRRP samples and their corresponding labels. Experimental results on synthetic and measured HRRP data show that the proposed models are efficient in computation, have good classification accuracy and generalization ability, and provide highly interpretable multi-stochastic-layer latent structure.



قيم البحث

اقرأ أيضاً

Learning generative models that span multiple data modalities, such as vision and language, is often motivated by the desire to learn more useful, generalisable representations that faithfully capture common underlying factors between the modalities. In this work, we characterise successful learning of such models as the fulfillment of four criteria: i) implicit latent decomposition into shared and private subspaces, ii) coherent joint generation over all modalities, iii) coherent cross-generation across individual modalities, and iv) improved model learning for individual modalities through multi-modal integration. Here, we propose a mixture-of-experts multimodal variational autoencoder (MMVAE) to learn generative models on different sets of modalities, including a challenging image-language dataset, and demonstrate its ability to satisfy all four criteria, both qualitatively and quantitatively.
Neural samplers such as variational autoencoders (VAEs) or generative adversarial networks (GANs) approximate distributions by transforming samples from a simple random source---the latent space---to samples from a more complex distribution represent ed by a dataset. While the manifold hypothesis implies that the density induced by a dataset contains large regions of low density, the training criterions of VAEs and GANs will make the latent space densely covered. Consequently points that are separated by low-density regions in observation space will be pushed together in latent space, making stationary distances poor proxies for similarity. We transfer ideas from Riemannian geometry to this setting, letting the distance between two points be the shortest path on a Riemannian manifold induced by the transformation. The method yields a principled distance measure, provides a tool for visual inspection of deep generative models, and an alternative to linear interpolation in latent space. In addition, it can be applied for robot movement generalization using previously learned skills. The method is evaluated on a synthetic dataset with known ground truth; on a simulated robot arm dataset; on human motion capture data; and on a generative model of handwritten digits.
In model-based reinforcement learning, generative and temporal models of environments can be leveraged to boost agent performance, either by tuning the agents representations during training or via use as part of an explicit planning mechanism. Howev er, their application in practice has been limited to simplistic environments, due to the difficulty of training such models in larger, potentially partially-observed and 3D environments. In this work we introduce a novel action-conditioned generative model of such challenging environments. The model features a non-parametric spatial memory system in which we store learned, disentangled representations of the environment. Low-dimensional spatial updates are computed using a state-space model that makes use of knowledge on the prior dynamics of the moving agent, and high-dimensional visual observations are modelled with a Variational Auto-Encoder. The result is a scalable architecture capable of performing coherent predictions over hundreds of time steps across a range of partially observed 2D and 3D environments.
The length of the geodesic between two data points along a Riemannian manifold, induced by a deep generative model, yields a principled measure of similarity. Current approaches are limited to low-dimensional latent spaces, due to the computational c omplexity of solving a non-convex optimisation problem. We propose finding shortest paths in a finite graph of samples from the aggregate approximate posterior, that can be solved exactly, at greatly reduced runtime, and without a notable loss in quality. Our approach, therefore, is hence applicable to high-dimensional problems, e.g., in the visual domain. We validate our approach empirically on a series of experiments using variational autoencoders applied to image data, including the Chair, FashionMNIST, and human movement data sets.
We propose a deep generative Markov State Model (DeepGenMSM) learning framework for inference of metastable dynamical systems and prediction of trajectories. After unsupervised training on time series data, the model contains (i) a probabilistic enco der that maps from high-dimensional configuration space to a small-sized vector indicating the membership to metastable (long-lived) states, (ii) a Markov chain that governs the transitions between metastable states and facilitates analysis of the long-time dynamics, and (iii) a generative part that samples the conditional distribution of configurations in the next time step. The model can be operated in a recursive fashion to generate trajectories to predict the system evolution from a defined starting state and propose new configurations. The DeepGenMSM is demonstrated to provide accurate estimates of the long-time kinetics and generate valid distributions for molecular dynamics (MD) benchmark systems. Remarkably, we show that DeepGenMSMs are able to make long time-steps in molecular configuration space and generate physically realistic structures in regions that were not seen in training data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا