ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-neutron transfer in $^{8}$He induced reactions near the Coulomb barrier

272   0   0.0 ( 0 )
 نشر من قبل Ismael Martel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The measured inclusive $^6$He and $^4$He production cross sections of G. Marqu{i}nez-Dur{a}n {em et al.}, Phys. Rev. C {bf 98}, 034615 (2018) are reexamined and the conclusions concerning the relative importance of 1n and 2n transfer to the production of $^6$He arising from the interaction of a 22 MeV $^8$He beam with a $^{208}$Pb target revised. A consideration of the kinematics of the 2n-stripping reaction when compared with the measured $^6$He total energy versus angle spectrum places strict limits on the allowed excitation energy of the $^{210}$Pb residual, so constraining distorted wave Born approximation calculations that the contribution of the 2n stripping process to the inclusive $^6$He production can only be relatively small. It is therefore concluded that the dominant $^6$He production mechanism must be 1n stripping followed by decay of the $^7$He ejectile. Based on this result we present strong arguments in favor of direct, one step four-neutron (4n) stripping as the main mechanism for $^4$He production.



قيم البحث

اقرأ أيضاً

It was first noted during the 1970s that finite-range distorted wave Born approximation (FR-DWBA) calculations were unable satisfactorily to describe the shape of the angular distributions of many single-proton (and some single-neutron) transfer reac tions induced by heavy ions, with calculations shifted to larger angles by up to ~ 4 degrees compared with the data. These reactions exhibited a significant mismatch, either of the reaction Q value or the grazing angular momentum of the entrance and exit channels, and it was speculated that the inclusion of multi-step transfer paths via excited state(s) of the projectile and/or ejectile could compensate for the effect of this mismatch and yield good descriptions of the data by shifting the calculated peaks to smaller angles. However, to date this has not been explicitly demonstrated for many reactions. In this work we show that inclusion of the two-step transfer path via the 4.44-MeV 2+ excited state of the 12C projectile in coupled channel Born approximation calculations enables a good description of the 208Pb(12C,11B)209Bi single-proton stripping data at four incident energies which could not be described by the FR-DWBA. We also show that inclusion of a similar reaction path for the 208Pb(12C,13C)207Pb single-neutron pickup reaction has a relatively minor influence, slightly improving the already good description obtained with the FR-DWBA.
110 - G. S. Li , J. G. Wang , J. Lubian 2019
The cross sections of complete fusion and incomplete fusion for the $ ^{9} $Be + $ ^{197} $Au system, at energies not too much above the Coulomb barrier, were measured for the first time. The online activation followed by offline $gamma$-ray spectros copy method was used for the derivation of the cross sections. A slightly higher value of ICF/TF ratio has been observed, compared to other systems reported in the literature with $ ^{9} $Be beam. The experimental data were compared with coupled channel calculations without taking into account the coupling of the breakup channel, and experimental data of other reaction systems with weakly bound projectiles. A complete fusion suppression of about 40% was found for the $ ^{9} $Be + $ ^{197} $Au system, at energies above the barrier, whereas the total fusion cross sections are in agreement with the calculations.
Fusion excitation function of $^{35}$Cl + $^{130}$Te system is measured in the energy range around the Coulomb barrier and analyzed in the framework of the coupled-channels approach. The role of projectile deformation, nuclear structure, and the coup lings of inelastic excitations and positive Q$-$value neutron transfer channels in sub-barrier fusion are investigated through the comparison of reduced fusion excitation functions of $^{35,37}$Cl +$^{130}$Te systems. The reduced fusion excitation function of $^{35}$Cl + $^{130}$Te system shows substantial enhancement over $^{37}$Cl + $^{130}$Te system in sub-barrier energy region which is attributed to the presence of positive Q-value neutron transfer channels in $^{35}$Cl + $^{130}$Te system. Findings of this work strongly suggest the importance of +2$n$ - transfer coupling in sub-barrier fusion apart from the simple inclusion of inelastic excitations of interacting partners, and are in stark contrast with the results presented by Kohley textit{et al.}, [Phys. Rev. Lett. 107, 202701 (2011)].
Angular distributions for the elastic scattering of 8Li on 9Be and the neutron transfer reactions 9Be(8Li,7Li)10Be and 9Be(8Li,9Li)8Be have been measured with a 27 MeV 8Li radioactive nuclear beam. Spectroscopic factors for 8Li|n=9Li and 7Li|n=8Li bo und systems were obtained from the comparison between the experimental differential cross section and finite-range DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions 7Li(n,g)8Li and 8Li(n,g)9Li were calculated in the framework of a potential model.
Reaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of th e group suggests that it results primarily from a direct nuclear process. It is likely that this transfer/breakup channel is the doorway state that accounts for the previously observed large sub-barrier fusion enhancement in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا