ﻻ يوجد ملخص باللغة العربية
Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of ECP applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow, and wind plant modelling. AMReX is a software framework that provides a unified infrastructure with the functionality needed for these and other AMR applications to be able to effectively and efficiently utilize machines from laptops to exascale architectures. AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving accurate descriptions of different physical processes in complex multi-physics algorithms. AMReX supports algorithms that solve systems of partial differential equations (PDEs) in simple or complex geometries, and those that use particles and/or particle-mesh operations to represent component physical processes. In this paper, we will discuss the core elements of the AMReX framework such as data containers and iterators as well as several specialized operations to meet the needs of the application projects. In addition we will highlight the strategy that the AMReX team is pursuing to achieve highly performant code across a range of accelerator-based architectures for a variety of different applications.
Programming current supercomputers efficiently is a challenging task. Multiple levels of parallelism on the core, on the compute node, and between nodes need to be exploited to make full use of the system. Heterogeneous hardware architectures with ac
In this article, a new unified duality theory is developed for Petrov-Galerkin finite element methods. This novel theory is then used to motivate goal-oriented adaptive mesh refinement strategies for use with discontinuous Petrov-Galerkin (DPG) metho
Computationally solving the equations of elasticity is a key component in many materials science and mechanics simulations. Phenomena such as deformation-induced microstructure evolution, microfracture, and microvoid nucleation are examples of applic
Large-scale finite element simulations of complex physical systems governed by partial differential equations crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing
Lattice Boltzmann methods are a popular mesoscopic alternative to macroscopic computational fluid dynamics solvers. Many variants have been developed that vary in complexity, accuracy, and computational cost. Extensions are available to simulate mult