ترغب بنشر مسار تعليمي؟ اضغط هنا

Koopman Resolvent: A Laplace-Domain Analysis of Nonlinear Autonomous Dynamical Systems

287   0   0.0 ( 0 )
 نشر من قبل Yoshihiko Susuki
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The motivation of our research is to establish a Laplace-domain theory that provides principles and methodology to analyze and synthesize systems with nonlinear dynamics. A semigroup of composition operators defined for nonlinear autonomous dynamical systems -- the Koopman semigroup and its associated Koopman generator -- plays a central role in this study. We introduce the resolvent of the Koopman generator, which we call the Koopman resolvent, and provide its spectral characterization for three types of nonlinear dynamics: ergodic evolution on an attractor, convergence to a stable equilibrium point, and convergence to a (quasi-)stable limit cycle. This shows that the Koopman resolvent provides the Laplace-domain representation of such nonlinear autonomous dynamics. A computational aspect of the Laplace-domain representation is also discussed with emphasis on non-stationary Koopman modes.



قيم البحث

اقرأ أيضاً

We consider the pressing question of how to model, verify, and ensure that autonomous systems meet certain textit{obligations} (like the obligation to respect traffic laws), and refrain from impermissible behavior (like recklessly changing lanes). Te mporal logics are heavily used in autonomous system design; however, as we illustrate here, temporal (alethic) logics alone are inappropriate for reasoning about obligations of autonomous systems. This paper proposes the use of Dominance Act Utilitarianism (DAU), a deontic logic of agency, to encode and reason about obligations of autonomous systems. We use DAU to analyze Intels Responsibility-Sensitive Safety (RSS) proposal as a real-world case study. We demonstrate that DAU can express well-posed RSS rules, formally derive undesirable consequences of these rules, illustrate how DAU could help design systems that have specific obligations, and how to model-check DAU obligations.
The Koopman operator allows for handling nonlinear systems through a (globally) linear representation. In general, the operator is infinite-dimensional - necessitating finite approximations - for which there is no overarching framework. Although ther e are principled ways of learning such finite approximations, they are in many instances overlooked in favor of, often ill-posed and unstructured methods. Also, Koopman operator theory has long-standing connections to known system-theoretic and dynamical system notions that are not universally recognized. Given the former and latter realities, this work aims to bridge the gap between various concepts regarding both theory and tractable realizations. Firstly, we review data-driven representations (both unstructured and structured) for Koopman operator dynamical models, categorizing various existing methodologies and highlighting their differences. Furthermore, we provide concise insight into the paradigms relation to system-theoretic notions and analyze the prospect of using the paradigm for modeling control systems. Additionally, we outline the current challenges and comment on future perspectives.
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of Cole-Hopf-type transformations for dynamics.
Koopman operator theory has served as the basis to extract dynamics for nonlinear system modeling and control across settings, including non-holonomic mobile robot control. There is a growing interest in research to derive robustness (and/or safety) guarantees for systems the dynamics of which are extracted via the Koopman operator. In this paper, we propose a way to quantify the prediction error because of noisy measurements when the Koopman operator is approximated via Extended Dynamic Mode Decomposition. We further develop an enhanced robot control strategy to endow robustness to a class of data-driven (robotic) systems that rely on Koopman operator theory, and we show how part of the strategy can happen offline in an effort to make our algorithm capable of real-time implementation. We perform a parametric study to evaluate the (theoretical) performance of the algorithm using a Van der Pol oscillator and conduct a series of simulated experiments in Gazebo using a non-holonomic wheeled robot.
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal f orm. To steer the system to optimize a performance function without knowing its explicit form, we propose a novel numerical optimization-based extremum seeking control (NOESC) design consisting of a constrained numerical optimization method and an inversion based feedforward controller. In particular, a projected gradient descent algorithm is exploited to produce the state sequence to optimize the performance function, whereas a suitable boundary value problem accommodates the finite-time state transition between each two consecutive points of the state sequence. Compared to available NOESC methods, the proposed approach i) can explicitly deal with output constraints; ii) the performance function can consider a direct dependence on the states of the internal dynamics; iii) the internal dynamics do not have to be necessarily stable. The effectiveness of the proposed ESC scheme is shown through extensive numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا