ﻻ يوجد ملخص باللغة العربية
Automatic few-shot font generation is a practical and widely studied problem because manual designs are expensive and sensitive to the expertise of designers. Existing few-shot font generation methods aim to learn to disentangle the style and content element from a few reference glyphs, and mainly focus on a universal style representation for each font style. However, such approach limits the model in representing diverse local styles, and thus makes it unsuitable to the most complicated letter system, e.g., Chinese, whose characters consist of a varying number of components (often called radical) with a highly complex structure. In this paper, we propose a novel font generation method by learning localized styles, namely component-wise style representations, instead of universal styles. The proposed style representations enable us to synthesize complex local details in text designs. However, learning component-wise styles solely from reference glyphs is infeasible in the few-shot font generation scenario, when a target script has a large number of components, e.g., over 200 for Chinese. To reduce the number of reference glyphs, we simplify component-wise styles by a product of component factor and style factor, inspired by low-rank matrix factorization. Thanks to the combination of strong representation and a compact factorization strategy, our method shows remarkably better few-shot font generation results (with only 8 reference glyph images) than other state-of-the-arts, without utilizing strong locality supervision, e.g., location of each component, skeleton, or strokes. The source code is available at https://github.com/clovaai/lffont.
When fonts are used on documents, they are intentionally selected by designers. For example, when designing a book cover, the typography of the text is an important factor in the overall feel of the book. In addition, it needs to be an appropriate fo
Few-shot image generation seeks to generate more data of a given domain, with only few available training examples. As it is unreasonable to expect to fully infer the distribution from just a few observations (e.g., emojis), we seek to leverage a lar
One of the key limitations of modern deep learning approaches lies in the amount of data required to train them. Humans, by contrast, can learn to recognize novel categories from just a few examples. Instrumental to this rapid learning ability is the
Font generation is a challenging problem especially for some writing systems that consist of a large number of characters and has attracted a lot of attention in recent years. However, existing methods for font generation are often in supervised lear
Automatic character generation is an appealing solution for new typeface design, especially for Chinese typefaces including over 3700 most commonly-used characters. This task has two main pain points: (i) handwritten characters are usually associated