ﻻ يوجد ملخص باللغة العربية
Discrete multi-tone transmission (DMT) is a promising candidate for future 400G data center interconnects. Eight channels, each carrying 56 Gb/s of data can be combined in a 50-GHz channel grid to form a 400 Gb/s superchannel. For a fully loaded 96 channel DWDM system this leads to a total capacity of 4.8 Tb/s. To meet the requirements of the targeted application in terms of cost efficiency and low power consumption, it is important to keep the complexity for the digital signal processing as low as possible. For DMT, the complexity is mainly determined by the length of the fast Fourier transformation (FFT). Since data center interconnects only have to bridge a distance of typically 80 km, we here investigate among other parameters the influence of the FFT length among other parameters on the achievable performance for 56 Gb/s DMT only for this distance. Transmission is performed in C-band to enable DWDM and no optical dispersion compensation is applied. We consider double sideband (DSB) as well as vestigial sideband (VSB) DMT. It can be seen that an FFT length of 128 is sufficient to reach the required performance in terms of bit error ratio, however, a higher length can significantly improve the performance.
We review three solutions for low-cost data center interconnects with a target reach of up to 80 km. Directly detected DMT, PAM-4 and multi-band CAP are promising modulation schemes, enabling 400 Gbit/s by combining eight channels of 56 Gbit/s.
We review some currently discussed solutions for 400 Gbit/s inter-data center WDM transmission for up to 100 km. We focus on direct detected solutions, namely PAM4 and DMT, and present two WDM systems based on these formats.
In this paper, we formulate the collaborative multi-user wireless video transmission problem as a multi-user Markov decision process (MUMDP) by explicitly considering the users heterogeneous video traffic characteristics, time-varying network conditi
We demonstrate up to 12 km, 56 Gb/s DMT transmission using high-speed VCSELs in the 1.5 um wavelength range for future 400Gb/s intra-data center connects, enabled by vestigial sideband filtering of the transmit signal.
Reconfigurable intelligent surfaces (RISs) are one of the foremost technological enablers of future wireless systems. They improve communication and localization by providing a strong non-line-of-sight path to the receiver. In this paper, we propose