The protoplanetary disc HD 100453 exhibits a curious combination of spirals, shadows and a relative misalignment between the observed outer disc and inferred inner disc. This disc is accompanied by a secondary star on a bound orbit exterior to the disc. Recent observations have suggested there may be an additional low-mass companion residing within the disc inner cavity. In our companion paper the orbit of the secondary was shown to be misaligned by 61 degrees to the plane of the outer disc. Here we investigate the properties of the inner companion and the origin of the misalignment between the inner and outer disc. Using numerical simulations and synthetic observations, we show that the disc structure and kinematics are consistent with a $lesssim$ 5 Jupiter mass planet located at 15-20au. We find that the disc evolution over around 50 binary orbits (about 10$^5$ yrs) is governed by differential precession and to a lesser extent, the Kozai-Lidov effect. In our proposed model the misalignment observed between the outer and inner disc arises naturally as a result of the misaligned outer companion driving the outer disc to precess more rapidly than the inner disc.