ﻻ يوجد ملخص باللغة العربية
Weyl semimetals, featuring massless linearly dispersing chiral fermions in three dimensions, provide an excellent platform for studying the interplay of electronic interactions and topology, and exploring new correlated states of matter. Here, we examine the effect of a local repulsive interaction on an inversion-symmetry breaking Weyl semimetal model, using cluster dynamical mean field theory and variational cluster approximation methods. Our analysis reveals a continuous transition from the gapless Weyl semimetal phase to a gapped spin density wave ordered phase at a critical value of the interaction, which is determined by the band structure parameters. Further, we introduce a finite tilt in the linear dispersion and examine the corresponding behavior for a type-II Weyl semimetal model, where the critical interaction strength is found to be significantly diminished, indicating a greater susceptibility towards interactions. The behavior of different physical quantities, such as the double occupancy, the spectral function and the Berry curvature associated with the Weyl nodes are obtained in both the semimetallic and the magnetically ordered states. Finally, we provide an interaction-induced phase diagram for the Weyl semimetal model, as a function of the tilt parameter.
We investigate interacting spin susceptibilities in lattice models for $mathcal{T}$-reversal symmetry-broken Weyl semimetals. We employ a random phase approximation (RPA) method for the spin-SU(2)-symmetry-broken case that includes mixtures of ladder
Type II Weyl semimetal, a three dimensional gapless topological phase, has drawn enormous interest recently. These topological semimetals enjoy overtilted dispersion and Weyl nodes that separate the particle and hole pocket. Using perturbation renorm
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. Materials based on quasi two-dimensional bismuth layers were recently designed and provide an arena for the study of the interplay between a
Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fe
Type-II Weyl semimetals are characterized by the tilted linear dispersion in the low-energy excitations, mimicking Weyl fermions but with manifest violation of the Lorentz invariance, which has intriguing quantum transport properties. The magnetocond