ﻻ يوجد ملخص باللغة العربية
We present an analytical formalism, supported by numerical simulations, for studying forces that act on curved walls following temperature quenches of the surrounding ideal Brownian fluid. We show that, for curved surfaces, the post-quench forces initially evolve rapidly to an extremal value, whereafter they approach their steady state value algebraically in time. In contrast to the previously-studied case of flat boundaries (lines or planes), the algebraic decay for the curved geometries depends on the dimension of the system. Specifically, the steady-state values of the force are approached in time as $t^{-d/2}$ in d-dimensional spherical (curved) geometries. For systems consisting of concentric circles or spheres, the exponent does not change for the force on the outer circle or sphere. However, the force exerted on the inner circle or sphere experiences an overshoot and, as a result, does not evolve towards the steady state in a simple algebraic manner. The extremal value of the force also depends on the dimension of the system, and originates from the curved boundaries and the fact that particles inside a sphere or circle are locally more confined, and diffuse less freely than particles outside the circle or sphere.
Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium fluctuations in fluids subjecte
We present exact derivations of the effective capillary wave fluctuation induced forces resulting from pinning of an interface between two coexisting phases at two points separated by a distance r. In two dimensions the Ising ferromagnet calculations
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-
Driven diffusive systems constitute paradigmatic models of nonequilibrium physics. Among them, a driven lattice gas known as the asymmetric simple exclusion process (ASEP) is the most prominent example for which many intriguing exact results have bee
We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting i