ترغب بنشر مسار تعليمي؟ اضغط هنا

Instabilities and transition in cooled-wall hypersonic boundary layers

172   0   0.0 ( 0 )
 نشر من قبل Sasidharan Nair Unnikrishnan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wall cooling has substantial effects on the development of instabilities and transition processes in hypersonic boundary layers (HBLs). A sequence of linear stability theory, two-dimensional and non-linear three-dimensional DNSs is used to analyze Mach~6 boundary layers, with wall temperatures ranging from near-adiabatic to highly cooled conditions, where the second-mode instability radiates energy. Fluid-thermodynamic analysis shows that this radiation comprises both acoustic as well as vortical waves. 2D simulations show that the conventional trapped nature of second-mode instability is ruptured. Although the energy efflux of both acoustic and vortical components increases with wall-cooling, the destabilization effect is much stronger and no significant abatement of pressure perturbations is realized. In the near-adiabatic HBL, the wavepacket remains trapped within the boundary layer and attenuates outside the region of linear instability. However, wavepackets in the cooled-wall HBLs amplify and display nonlinear distortion, and transition more rapidly. The structure of the wavepacket displays different behavior; moderately-cooled walls show bifurcation into a leading turbulent head region and a trailing harmonic region, while highly-cooled wall cases display lower convection speeds and significant wavepacket elongation, with intermittent spurts of turbulence in the wake of the head region. This elongation effect is associated with a weakening of the lateral jet mechanism due to the breakdown of spanwise coherent structures. In moderately cooled-walls, the spatially-localized wall loading is due to coherent structures in the leading turbulent head region. In highly-cooled walls, the elongated near-wall streaks in the wake region of the wavepacket result in more than twice as large levels of skin friction and heat transfer over a sustained period of time.



قيم البحث

اقرأ أيضاً

A homogenization approach is proposed for the treatment of porous wall boundary conditions in the computation of compressible viscous flows. Like any other homogenization approach, it eliminates the need for pore-resolved fluid meshes and therefore e nables practical flow simulations in computational fluid domains with porous wall boundaries. Unlike alternative approaches however, it does not require prescribing a mass flow rate and does not introduce in the computational model a heuristic discharge coefficient. Instead, it models the inviscid flux through a porous wall surrounded by the flow as a weighted average of the inviscid flux at an impermeable surface and that through pores. It also introduces a body force term in the governing equations to account for friction loss along the pore boundaries. The source term depends on the thickness of the porous wall and the concept of an equivalent single pore. The feasibility of the latter concept is demonstrated using low-speed permeability test data for the fabric of the Mars Science Laboratory parachute canopy. The overall homogenization approach is illustrated with a series of supersonic flow computations through the same fabric and verified using supersonic, pore-resolved numerical simulations.
Instability of stratified multi-phase flow in a rotating platform becomes important because of a potential role in micro-mixing and micro-machines. Centrifugal actuation can play an important role in driving the flow and Coriolis force can enhance th e mixing in a short span by destabilizing the flow. In this study, we focus on the impact of the Coriolis force on a rotating viscosity-stratified flow with a thin diffusive mixed layer between two fluid layers. Modal stability analysis is used to estimate the critical parameters, namely Rotation number, Reynolds number, and wave number, which are responsible to modulate the instability mechanism for different viscosity contrasts. Present study explores competing influences of rotational forces against the viscous and inertial forces. Correspondingly, rotational direction (clockwise/anticlockwise) shows a significant effect on the spatio-temporal instability mechanism and anticlockwise rotation promotes the instability. Usually, miscible viscosity stratified flow with respect to streamwise disturbance becomes more unstable for a thinner mixed layer. On the contrary, our numerical computation confirms a completely contrasting scenario, considering Coriolis force driven instability of a miscible system on account of spanwise disturbances. Possible physical mechanisms for the same are discussed in terms of base flow and energy fluctuation among perturbed and base flow. Comparison of two and three-dimensional instability is done to give a clear-cut idea about the linear instability of the flow system considered herein. Velocity and viscosity perturbation distributions display a critical bonding between the vortices near and away from mixed layer, which may be responsible for the variation of instability with respect to viscosity ratio and rotational direction.
We investigate a mechanism to manipulate wall-bounded flows whereby wave-like undulations of the wall topography drives the creation of bespoke longitudinal vortices. A resonant interaction between the ambient vorticity of the undisturbed shear flow and the undulation of streamlines enforced by the wall topography serves to slightly rotate the spanwise vorticity of the mean flow into the streamwise direction, creating a swirling motion, in the form of regular streamwise rolls. The process is kinematic and essentially identical to the `direct drive CL1 mechanism for Langmuir circulation (LC) proposed by Craik (1970). Boundary layers are modelled by selecting suitable primary flow profiles. A simple, easily integrable expression for the cross-plane stream function is found in two asymptotic regimes: the resonant onset of the essentially inviscid instability at early times, and the fully developed steady state viscous flow. Linear-order solutions for flow over undulating boundaries are obtained, fully analytical in the special case of a power-law profile. These solutions allow us to quickly map out the circulation response to boundary design parameters. The study is supplemented with direct numerical simulations which verify the manifestation of boundary induced Langmuir vortices in laminar flows with no-slip boundaries. Simulations show good qualitative agreement with theory. Quantitatively, the comparisons rest on a displacement length closure parameter adopted in the perturbation theory. While wall-driven LC appear to become unstable in turbulent flows, we propose that the mechanism can promote swirling motion in boundary layers, a flow feature which has been reported to reduce drag in some situations.
The direct measurement of wall shear stress in turbulent boundary layers (TBL) is challenging, therefore requiring it to be indirectly determined from mean profile measurements. Most popular methods assume the mean streamwise velocity to satisfy eith er a logarithmic law in the inner layer or a composite velocity profile with many tuned constants for the entire TBL, and require reliable data from the noise-prone inner layer. A simple method is proposed to determine the wall shear stress in zero pressure gradient TBL from measured mean profiles, without requiring noise-prone near-wall data. The method requires a single point measurement of mean streamwise velocity and mean shear stress in the outer layer, preferably between $20$ to $50$ $%$ of the TBL, and an estimate of boundary layer thickness and shape factor. The friction velocities obtained using the proposed method agree with reference values, to within $3$ $%$ over a range of Reynolds number.
Linear stability analysis is performed using a combination of two-dimensional Direct Simulation Monte Carlo (DSMC) method for the computation of the basic state and solution of the pertinent eigenvalue problem, as applied to the canonical boundary la yer on a semi-infinite flat plate. Three different gases are monitored, namely nitrogen, argon and air, the latter as a mixture of 79% Nitrogen and 21% Oxygen at a range of free-stream Mach numbers corresponding to flight at an altitude of 55km. A neural network has been utilised to predict and smooth the raw DSMC data; the steady laminar profiles obtained are in very good agreement with those computed by (self-similar) boundary layer theory, under isothermal or adiabatic wall conditions, subject to the appropriate slip corrections computed in the DSMC method. The leading eigenmode results pertaining to the unsmoothed DSMC profiles are compared against those of the classic boundary layer theory. Small quantitative, but no significant qualitative differences between the results of the two classes of steady base flows have been found at all parameters examined. The frequencies of the leading eigenmodes at all conditions examined are practically identical, while perturbations corresponding to the DSMC profiles are found to be systematically more damped than their counterparts arising in the boundary layer at the conditions examined, when the correct velocity slip and temperature jump boundary conditions are imposed in the base flow profiles; by contrast, when the classic no-slip boundary conditions are used, less damped/more unstable profiles are obtained, which would lead the flow to earlier transition. On the other hand, the DSMC profiles smoothed by the neural network are marginally more stable than their unsmoothed counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا