ﻻ يوجد ملخص باللغة العربية
A fascinating photonic platform with a small device scale, fast operating speed, as well as low energy consumption is two-dimensional (2D) materials, thanks to their in-plane crystalline structures and out-of-plane quantum confinement. The key to further advancement in this research field is the ability to modify the optical properties of the 2D materials. The modifications typically come from the materials themselves, for example, altering their chemical compositions. This article reviews a comparably less explored but promising means, through engineering the photonic surroundings. Rather than modifying materials themselves, this means manipulates the dielectric and metallic environments, both uniform and nanostructured, that directly interact with the materials. For 2D materials that are only one or a few atoms thick, the interaction with the environment can be remarkably efficient. This review summarizes the three degrees of freedom of this interaction: weak coupling, strong coupling, and multi-functionality. Also, it reviews a relatively timing concept of engineering that directly applied to the 2D materials by patterning. Benefiting from the burgeoning development of nanophotonics, the engineering of photonic environments provides a versatile and creative methodology of reshaping light-matter interaction in 2D materials.
Here we would like to discuss the light transmission modulation by periodic and disordered one dimensional (1D) photonic structures. In particular, we will present some theoretical and experimental findings highlighting the peculiar optical propertie
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. While extrinsic mechanisms can in general be minimized
Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since the Coulomb interaction is responsible for the i
Symmetry breaking in two-dimensional layered materials plays a significant role in their macroscopic electrical, optical, magnetic and topological properties, including but not limited to spin-polarization effects, valley-contrasting physics, nonline
The field of 2D materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control, unprecedented degrees of freedom, and to build material heterostructures from bottom up with