ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of Disk Winds from a Combined Study of Optical and Infrared Forbidden Lines

403   0   0.0 ( 0 )
 نشر من قبل Ilaria Pascucci
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze high-resolution (dv=<10km/s) optical and infrared spectra covering the [OI] 6300 angstrom and [NeII] 12.81 micron lines from a sample of 31 disks in different evolutionary stages. Following work at optical wavelengths, we use Gaussian profiles to fit the [NeII] lines and classify them into HVC (LVC) if the line centroid is more (less) blueshifted than 30 km/s with respect to the stellar radial velocity. Unlike for the [OI] where a HVC is often accompanied by a LVC, all 17 sources with a [NeII] detection have either a HVC or a LVC. [NeII] HVCs are preferentially detected toward high accretors (Macc > 10$^{-8}$ Msun/yr) while LVCs are found in sources with low Macc, low [OI] luminosity, and large infrared spectral index (n13-31). Interestingly, the [NeII] and [OI] LVC luminosities display an opposite behaviour with n13-31: as the inner dust disk depletes (higher n13-31) the [NeII] luminosity increases while the [OI] weakens. The [NeII] and [OI] HVC profiles are generally similar with centroids and FWHMs showing the expected behaviour from shocked gas in micro-jets. In contrast, the [NeII] LVC profiles are typically more blueshifted and narrower than the [OI] profiles. The FWHM and centroid vs. disk inclination suggest that the [NeII] LVC predominantly traces unbound gas from a slow, wide-angle wind that has not lost completely the Keplerian signature from its launching region. We sketch an evolutionary scenario that could explain the combined [OI] and [NeII] results and includes screening of hard (~1keV) X-rays in inner, mostly molecular, MHD winds.



قيم البحث

اقرأ أيضاً

Magnetohydrodynamic (MHD) and photoevaporative winds are thought to play an important role in the evolution and dispersal of planet-forming disks. We report the first high-resolution ($Delta vsim$6kms) analysis of [S II] $lambda$4068, [O I] $lambda$5 577, and [O I] $lambda$6300 lines from a sample of 48 T Tauri stars. Following Simon et al. (2016), we decompose them into three kinematic components: a high-velocity component (HVC) associated with jets, and a low-velocity narrow (LVC-NC) and broad (LVC-BC) components. We confirm previous findings that many LVCs are blueshifted by more than 1.5 kms$^{-1}$ thus most likely trace a slow disk wind. We further show that the profiles of individual components are similar in the three lines. We find that most LVC-BC and NC line ratios are explained by thermally excited gas with temperatures between 5,000$-$10,000 K and electron densities $sim10^{7}-10^{8}$ cm$^{-3}$. The HVC ratios are better reproduced by shock models with a pre-shock H number density of $sim10^{6}-10^{7}$ cm$^{-3}$. Using these physical properties, we estimate $dot{M}_{rm wind}/dot{M}_{rm acc}$ for the LVC and $dot{M}_{rm jet}/dot{M}_{rm acc}$ for the HVC. In agreement with previous work, the mass carried out in jets is modest compared to the accretion rate. With the likely assumption that the NC wind height is larger than the BC, the LVC-BC $dot{M}_{rm wind}/dot{M}_{rm acc}$ is found to be higher than the LVC-NC. These results suggest that most of the mass loss occurs close to the central star, within a few au, through an MHD driven wind. Depending on the wind height, MHD winds might play a major role in the evolution of the disk mass.
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p roto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
353 - C. Ginski , F. Menard , Ch. Rab 2020
To understand the formation of planetary systems, one needs to understand the initial conditions of planet formation, i.e. the young gas-rich planet forming disks. Spatially resolved high-contrast observations are of particular interest, since substr uctures in disks, linked to planet formation, can be detected and close companions or even planets in formation embedded in the disk can be revealed. In this study we present the first result of the DESTINYS survey (Disk Evolution Study Through Imaging of Nearby Young Stars). DESTINYS is an ESO/SPHERE large program that aims at studying disk evolution in scattered light, mainly focusing on a sample of low-mass stars (<1$M_odot$) in nearby (~200 pc) star-forming regions. In this particular study we present the observations of the ET Cha (RECX 15) system, a nearby old classical T Tauri star (5-8 Myr, ~100 pc), which is still strongly accreting. We use SPHERE/IRDIS in H-band polarimetric imaging mode to obtain high contrast images of the ET Cha system to search for scattered light from the circumstellar disk as well as thermal emission from close companions. We additionally employ VLT/NACO total intensity archival data taken in 2003. We report here the discovery of a low-mass (sub)stellar companion with SPHERE/IRDIS to ET Cha. We are estimating the mass of this new companion based on photometry. Depending on the system age it is a 5 Myr, 50 $M_{Jup}$ brown dwarf or an 8 Myr, 0.10 $M_odot$ M-type pre-main-sequence star. We explore possible orbital solutions and discuss the recent dynamic history of the system. Independent of the precise companion mass we find that the presence of the companion likely explains the small size of the disk around ET Cha. The small separation of the binary pair indicates that the disk around the primary component is likely clearing from the outside in, explaining the high accretion rate of the system.
Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very difficult. Hydrogen deuteride (HD) is a promising alternative to the commonly-used gas mass tracer, CO. We aim to examine the robustness of HD as tracer of the disk gas mass, specifically the effect of gas mass on the HD FIR emission and its sensitivity to the vertical structure. Deuterium chemistry reactions relevant for HD were implemented in the thermochemical code DALI and models were run for a range of disk masses and vertical structures. The HD J=1-0 line intensity depends directly on the gas mass through a sublinear power law relation with a slope of ~0.8. Assuming no prior knowledge about the vertical structure of a disk and using only the HD 1-0 flux, gas masses can be estimated to within a factor of 2 for low mass disks (M$_{rm disk} < 10^{-3}$ M$_odot$). For more massive disks, this uncertainty increases to more than an order of magnitude. Adding the HD 2-1 line or independent information about the vertical structure can reduce this uncertainty to a factor of ~3 for all disk masses. For TW Hya, using the radial and vertical structure from Kama et al. 2016b the observations constrain the gas mass to $6cdot10^{-3}$ M$_odot$ < M$_{rm disk} < 9cdot10^{-3}$ M$_odot$. Future observations require a 5$sigma$ sensitivity of $1.8cdot10^{-20}$ W m$^{-2}$ ($2.5cdot10^{-20}$ W m$^{-2}$) and a spectral resolving power R > 300 (1000) to detect HD 1-0 (HD 2-1) for all disk masses above $10^{-5}$ M$_odot$ with a line-to-continuum ratio > 0.01. These results show that HD can be used as an independent gas mass tracer with a relatively low uncertainty and should be considered as an important science goal for future FIR missions.
We report FUV, optical, and NIR observations of three T Tauri stars in the Orion OB1b subassociation with H$alpha$ equivalent widths consistent with low or absent accretion and various degrees of excess flux in the mid-infrared. We aim to search for evidence of gas in the inner disk in HST ACS/SBC spectra, and to probe the accretion flows onto the star using H$alpha$ and He I $lambda$10830 in spectra obtained at the Magellan and SOAR telescopes. At the critical age of 5 Myr, the targets are at different stages of disk evolution. One of our targets is clearly accreting, as shown by redshifted absorption at free-fall velocities in the He I line and wide wings in H$alpha$; however, a marginal detection of FUV H$_2$ suggests that little gas is present in the inner disk, although the spectral energy distribution indicates that small dust still remains close to the star. Another target is surrounded by a transitional disk, with an inner cavity in which little sub-micron dust remains. Still, the inner disk shows substantial amounts of gas, accreting onto the star at a probably low, but uncertain rate. The third target lacks both a He I line or FUV emission, consistent with no accretion or inner gas disk; its very weak IR excess is consistent with a debris disk. Different processes occurring in targets with ages close to the disk dispersal time suggest that the end of accretion phase is reached in diverse ways.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا