ترغب بنشر مسار تعليمي؟ اضغط هنا

Using first-order information in Direct Multisearch for multiobjective optimization

50   0   0.0 ( 0 )
 نشر من قبل Ana Luisa Custodio
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of a given problem. The competitiveness of Direct MultiSearch (DMS), a robust and efficient derivative-free optimization algorithm, will be stated for derivative-based multiobjective optimization problems. We will then assess the potential enrichment of adding first-order information to the DMS framework. Derivatives will be used to prune the positive spanning sets considered at the poll step of the algorithm, highlighting the role that ascent directions, that conform to the geometry of the nearby feasible region, can have. Both variants of DMS show to be competitive against a state-of-art derivative-based algorithm. Moreover, for reasonable small budgets of function evaluations, the new variant is not only competitive with the derivative-based solver but also with the original implementation of DMS.



قيم البحث

اقرأ أيضاً

In this article we develop a gradient-based algorithm for the solution of multiobjective optimization problems with uncertainties. To this end, an additional condition is derived for the descent direction in order to account for inaccuracies in the g radients and then incorporated in a subdivison algorithm for the computation of global solutions to multiobjective optimization problems. Convergence to a superset of the Pareto set is proved and an upper bound for the maximal distance to the set of substationary points is given. Besides the applicability to problems with uncertainties, the algorithm is developed with the intention to use it in combination with model order reduction techniques in order to efficiently solve PDE-constrained multiobjective optimization problems.
238 - Chaosheng Dong , Bo Zeng 2020
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe rformance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.
115 - Jian-Wen Peng , Jie Ren 2021
In this paper, we propose some new proximal quasi-Newton methods with line search or without line search for a special class of nonsmooth multiobjective optimization problems, where each objective function is the sum of a twice continuously different iable strongly convex function and a proper convex but not necessarily differentiable function. In these new proximal quasi-Newton methods, we approximate the Hessian matrices by using the well known BFGS, self-scaling BFGS, and the Huang BFGS method. We show that each accumulation point of the sequence generated by these new algorithms is a Pareto stationary point of the multiobjective optimization problem. In addition, we give their applications in robust multiobjective optimization, and we show that the subproblems of proximal quasi-Newton algorithms can be regarded as quadratic programming problems. Numerical experiments are carried out to verify the effectiveness of the proposed method.
We study the robustness of accelerated first-order algorithms to stochastic uncertainties in gradient evaluation. Specifically, for unconstrained, smooth, strongly convex optimization problems, we examine the mean-squared error in the optimization va riable when the iterates are perturbed by additive white noise. This type of uncertainty may arise in situations where an approximation of the gradient is sought through measurements of a real system or in a distributed computation over a network. Even though the underlying dynamics of first-order algorithms for this class of problems are nonlinear, we establish upper bounds on the mean-squared deviation from the optimal solution that are tight up to constant factors. Our analysis quantifies fundamental trade-offs between noise amplification and convergence rates obtained via any acceleration scheme similar to Nesterovs or heavy-ball methods. To gain additional analytical insight, for strongly convex quadratic problems, we explicitly evaluate the steady-state variance of the optimization variable in terms of the eigenvalues of the Hessian of the objective function. We demonstrate that the entire spectrum of the Hessian, rather than just the extreme eigenvalues, influence robustness of noisy algorithms. We specialize this result to the problem of distributed averaging over undirected networks and examine the role of network size and topology on the robustness of noisy accelerated algorithms.
100 - Jikai Jin 2020
In recent years, the success of deep learning has inspired many researchers to study the optimization of general smooth non-convex functions. However, recent works have established pessimistic worst-case complexities for this class functions, which i s in stark contrast with their superior performance in real-world applications (e.g. training deep neural networks). On the other hand, it is found that many popular non-convex optimization problems enjoy certain structured properties which bear some similarities to convexity. In this paper, we study the class of textit{quasar-convex functions} to close the gap between theory and practice. We study the convergence of first order methods in a variety of different settings and under different optimality criterions. We prove complexity upper bounds that are similar to standard results established for convex functions and much better that state-of-the-art convergence rates of non-convex functions. Overall, this paper suggests that textit{quasar-convexity} allows efficient optimization procedures, and we are looking forward to seeing more problems that demonstrate similar properties in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا