ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological 3D HI Gas Map with HETDEX Ly$alpha$ Emitters and eBOSS QSOs at $z=2$: IGM-Galaxy/QSO Connection and a $sim$ 40-Mpc Scale Giant HII Bubble Candidate

78   0   0.0 ( 0 )
 نشر من قبل Shiro Mukae
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present cosmological ($30-400$ Mpc) distributions of neutral hydrogen (HI) in the inter-galactic medium (IGM) traced by Ly$alpha$ Emitters (LAEs) and QSOs at $z=2.1-2.5$, selected with the data of the on-going Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the eBOSS survey. We investigate spatial correlations of LAEs and QSOs with HI tomography maps reconstructed from HI Ly$alpha$ forest absorption in the spectra of background galaxies and QSOs obtained by the CLAMATO survey and this study, respectively. In the cosmological volume far from QSOs, we find that LAEs reside in regions of strong HI absorption, i.e. HI rich, which is consistent with results of previous galaxy-background QSO pair studies. Moreover, there is an anisotropy in the HI-distribution plot of transverse and line-of-sight distances; on average the HI absorption peak is blueshifted by $sim 200$ km s$^{-1}$ from the LAE Ly$alpha$ redshift, reproducing the known average velocity offset between the Ly$alpha$ emission redshift and the galaxy systemic redshift. We have identified a $sim$ 40-Mpc scale volume of HI underdensity that is a candidate for a giant HII bubble, where six QSOs and an LAE overdensity exist at $left < z right > =2.16$. The coincidence of the QSO and LAE overdensities with the HI underdensity indicates that the ionizing photon radiation of the QSOs has created a highly ionized volume of multiple proximity zones in a matter overdensity. Our results suggest an evolutionary picture where HI gas in an overdensity of galaxies becomes highly photoionized when QSOs emerge in the galaxies.



قيم البحث

اقرأ أيضاً

We measure the Ly$alpha$ escape fraction of 935 [OIII]-emitting galaxies between $1.9 < z < 2.35$ by comparing stacked spectra from the Hubble Space Telescope/WFC3s near-IR grism to corresponding stacks from the Hobby Eberly Telescope Dark Energy Exp eriments Internal Data Release 2. By measuring the stacks H$beta$ to Ly$alpha$ ratios, we determine the Ly$alpha$ escape fraction as a function of stellar mass, star formation rate, internal reddening, size, and [OIII]/H$beta$ ratio. We show that the escape fraction of Ly$alpha$ correlates with a number of parameters, such as galaxy size, star formation rate, and nebular excitation. However, we also demonstrate that most of these relations are indirect, and the primary variables that control the escape of Ly$alpha$ are likely stellar mass and internal extinction. Overall, the escape of Ly$alpha$ declines from $gtrsim 18%$ in galaxies with $log M/M_{odot} lesssim 9$ to $lesssim 1%$ for systems with $log M/M_{odot} gtrsim 10$, with the samples mean escape fraction being $6.0^{+0.6%}_{-0.5%}$.
We present an IGM HI tomography map in a survey volume of $16 times 19 times 131 h^{-3} {rm comoving Mpc}^{3}$ (cMpc$^3$) centered at MAMMOTH-1 nebula and three neighbouring quasars at $z=2.3$. MAMMOTH-1 nebula is an enormous Ly$alpha$ nebula (ELAN ), hosted by a type-II quasar dubbed MAMMOTH1-QSO, that extends over $1 h^{-1}$ cMpc with not fully clear physical origin. Here we investigate the HI-gas distribution around MAMMOTH1-QSO with the ELAN and three neighbouring type-I quasars, making the IGM HI tomography map with a spatial resolution of $2.6 h^{-1}$ cMpc. Our HI tomography map is reconstructed with HI Ly$alpha$ forest absorption of bright background objects at $z=2.4-2.9$: one eBOSS quasar and 16 Keck/LRIS galaxy spectra. We estimate the radial profile of HI flux overdensity for MAMMOTH1-QSO, and find that MAMMOTH1-QSO resides in a volume with significantly weak HI absorption. This suggests that MAMMOTH1-QSO has a proximity zone where quasar illuminates and photo-ionizes the surrounding HI gas and suppresses HI absorption, and that the ELAN is probably a photo-ionized cloud embedded in the cosmic web. The HI radial profile of MAMMOTH1-QSO is very similar to those of three neighbouring type-I quasars at $z=2.3$, which is compatible with the AGN unification model. We compare the distributions of the HI absorption and star-forming galaxies in our survey volume, and identify a spatial offset between density peaks of star-forming galaxies and HI gas. This segregation may suggest anisotropic UV background radiation created by star-forming galaxy density fluctuations.
267 - Fakhri S. Zahedy 2019
(abridged) Observing the signature of accretion from the intergalactic medium (IGM) onto galaxies at z~3 requires the detection of faint (L<<L*) galaxies embedded in a filamentary matrix of low-density, metal-poor gas coherent over hundreds of kpc. W e study the gaseous environment of three Lyman$alpha$ emitters (LAEs) at z=2.7-2.8, found to be aligned in projection with a background QSO over ~250 kpc along the slit of a long-slit spectrum. The lack of detection of the LAEs in deep continuum images and the low inferred Ly$alpha$ luminosities show the LAEs to be intrinsically faint, low-mass galaxies (L<0.1 L*, M_star< 0.1 M*). An echelle spectrum of the QSO reveals strong Ly-alpha absorption within $pm200$ km/s from the LAEs. Our absorption line analysis leads to HI column densities in the range of log N(HI) =16-18. Associated absorption from ionic metal species CIV and SiIV constrains the gas metallicities to ~0.01 solar if the gas is optically thin, and possibly as low as ~0.001 solar if the gas is optically thick, assuming photoionization equilibrium. While the inferred metallicities are at least a factor of ten lower than expected metallicities in the interstellar medium (ISM) of these LAEs, they are consistent with the observed chemical enrichment level in the IGM at the same epoch. Total metal abundances and kinematic arguments suggest that these faint galaxies have not been able to affect the properties of their surrounding gas. The projected spatial alignment of the LAEs, together with the kinematic quiescence and correspondence between the LAEs and absorbing gas in velocity space suggests that these observations probe a possible filamentary structure. Taken together with the blue-dominant Ly$alpha$ emission line profile of one of the objects, the evidence suggests that the absorbing gas is part of an accretion stream of low-metallicity gas in the IGM.
Understanding how QSOs UV radiation affects galaxy formation is vital to our understanding of reionization era. Using a custom made narrow-band filter, $NB906$, on Subaru/Suprime-Cam, we investigated the number density of Ly$alpha$ emitters (LAE) aro und a QSO at z=6.4. To date, this is the highest redshift narrow-band observation, where LAEs around a luminous QSO are investigated. Due to the large field-of-view of Suprime-Cam, our survey area is $sim$5400~cMpc$^2$, much larger than previously studies at z=5.7 ($sim$200 cMpc$^2$). In this field, we previously found a factor of 7 overdensity of Lyman break galaxies (LBGs). Based on this, we expected to detect $sim$100 LAEs down to $NB906$=25 ABmag. However, our 6.4 hour exposure found none. The obtained upper limit on the number density of LAEs is more than an order lower than the blank fields. Furthermore, this lower density of LAEs spans a large scale of 10 $p$Mpc across. A simple argument suggests a strong UV radiation from the QSO can suppress star-formation in halos with $M_{vir}<10^{10}M_{odot}$ within a $p$Mpc from the QSO, but the deficit at the edge of the field (5 $p$Mpc) remains to be explained.
We present a spectroscopic survey of Ly$alpha$ emitters (LAEs) at $zapprox3.1$ in the Subaru MM-Newton Deep Survey Field. This field has deep imaging data in a series of broad and narrow bands, including two adjacent narrow bands NB497 and NB503 that have allowed us to efficiently select LAE candidates at $zapprox3.1$. Using spectroscopic observations on MMT Hectospec and Magellan M2FS, we obtained a sample of 166 LAEs at $zapprox3.1$ over an effective area of $sim$1.2 deg$^2$, including 16 previously known LAEs. This is so far the largest (spectroscopically confirmed) sample of LAEs at this redshift. We make use of the secure redshifts and multi-band data to measure spectral properties such as Ly$alpha$ luminosity and rest-frame UV slope. We derive a robust Ly$alpha$ luminosity function (LF) that spans a luminosity range from $sim10^{42.0}$ to $>10^{43.5}$ erg s$^{-1}$. Significant overdense and underdense regions are detected in our sample, but the area coverage is wide enough to largely suppress the effect from such cosmic variance. Our Ly$alpha$ LF is generally consistent with those from previous studies at $z sim 3.1$. At the brightest end of the LF, there is a tentative detection of a density excess that is not well described by the Schechter function. The comparison with the LFs at other redshifts suggests that the Ly$alpha$ LF does not show significant evolution at $2<z<5$. Finally, we build the composite spectra of the LAEs and detect the NVI and CIV doublet emission lines at significance of $sim 4 sigma$, suggesting very hard radiation fields in (some of) these LAEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا