ﻻ يوجد ملخص باللغة العربية
Compact neutron imagers using double-scatter kinematic reconstruction are being designed for localization and characterization of special nuclear material. These neutron imaging systems rely on scintillators with a rapid prompt temporal response as the detection medium. As n-p elastic scattering is the primary mechanism for light generation by fast neutron interactions in organic scintillators, proton light yield data are needed for accurate assessment of scintillator performance. The proton light yield of a series of commercial fast plastic organic scintillators---EJ-200, EJ-204, and EJ-208---was measured via a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable deuteron breakup neutron source, target scintillators housed in a dual photomultiplier tube configuration, and an array of pulse-shape-discriminating observation scintillators, the fast plastic scintillator light yield was measured over a broad and continuous energy range down to proton recoil energies of approximately 50 keV. This work provides key input to event reconstruction algorithms required for utilization of these materials in emerging neutron imaging modalities.
Plastic organic scintillators have been tailored in composition to achieve ultra-fast temporal response, thereby enabling the design and development of fast neutron detection systems with high timing resolution. Eljen Technologys plastic organic scin
Recent progress in the development of novel organic scintillators necessitates modern characterization capabilities. As the primary means of energy deposition by neutrons in these materials is n-p elastic scattering, knowledge of the proton light yie
A comparative study of the neutron-$gamma$ Pulse Shape Discrimination (PSD) with seven organic scintillators is performed using an identical setup and digital electronics. The scintillators include plastics (EJ-299-33 and a plastic prototype), single
The scintillation light output of a pure and a Thallium doped Sodium Iodide (NaI) crystal under irradiation with 5.486MeV alpha -particles has been measured over a temperature range from 1.7K to 300K. Estimates of the decay time constant at three sel
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The dis- cussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast p