ترغب بنشر مسار تعليمي؟ اضغط هنا

Justicia: A Stochastic SAT Approach to Formally Verify Fairness

112   0   0.0 ( 0 )
 نشر من قبل Debabrota Basu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As a technology ML is oblivious to societal good or bad, and thus, the field of fair machine learning has stepped up to propose multiple mathematical definitions, algorithms, and systems to ensure different notions of fairness in ML applications. Given the multitude of propositions, it has become imperative to formally verify the fairness metrics satisfied by different algorithms on different datasets. In this paper, we propose a textit{stochastic satisfiability} (SSAT) framework, Justicia, that formally verifies different fairness measures of supervised learning algorithms with respect to the underlying data distribution. We instantiate Justicia on multiple classification and bias mitigation algorithms, and datasets to verify different fairness metrics, such as disparate impact, statistical parity, and equalized odds. Justicia is scalable, accurate, and operates on non-Boolean and compound sensitive attributes unlike existing distribution-based verifiers, such as FairSquare and VeriFair. Being distribution-based by design, Justicia is more robust than the verifiers, such as AIF360, that operate on specific test samples. We also theoretically bound the finite-sample error of the verified fairness measure.



قيم البحث

اقرأ أيضاً

A new stream of research was born in the last decade with the goal of mining itemsets of interest using Constraint Programming (CP). This has promoted a natural way to combine complex constraints in a highly flexible manner. Although CP state-of-the- art solutions formulate the task using Boolean variables, the few attempts to adopt propositional Satisfiability (SAT) provided an unsatisfactory performance. This work deepens the study on when and how to use SAT for the frequent itemset mining (FIM) problem by defining different encodings with multiple task-driven enumeration options and search strategies. Although for the majority of the scenarios SAT-based solutions appear to be non-competitive with CP peers, results show a variety of interesting cases where SAT encodings are the best option.
Most Fairness in AI research focuses on exposing biases in AI systems. A broader lens on fairness reveals that AI can serve a greater aspiration: rooting out societal inequities from their source. Specifically, we focus on inequities in health inform ation, and aim to reduce bias in that domain using AI. The AI algorithms under the hood of search engines and social media, many of which are based on recommender systems, have an outsized impact on the quality of medical and health information online. Therefore, embedding bias detection and reduction into these recommender systems serving up medical and health content online could have an outsized positive impact on patient outcomes and wellbeing. In this position paper, we offer the following contributions: (1) we propose a novel framework of Fairness via AI, inspired by insights from medical education, sociology and antiracism; (2) we define a new term, bisinformation, which is related to, but distinct from, misinformation, and encourage researchers to study it; (3) we propose using AI to study, detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society; and (4) we suggest several pillars and pose several open problems in order to seed inquiry in this new space. While part (3) of this work specifically focuses on the health domain, the fundamental computer science advances and contributions stemming from research efforts in bias reduction and Fairness via AI have broad implications in all areas of society.
120 - Predrag Janicic 2010
There are a huge number of problems, from various areas, being solved by reducing them to SAT. However, for many applications, translation into SAT is performed by specialized, problem-specific tools. In this paper we describe a new system for unifor m solving of a wide class of problems by reducing them to SAT. The system uses a new specification language URSA that combines imperative and declarative programming paradigms. The reduction to SAT is defined precisely by the semantics of the specification language. The domain of the approach is wide (e.g., many NP-complete problems can be simply specified and then solved by the system) and there are problems easily solvable by the proposed system, while they can be hardly solved by using other programming languages or constraint programming systems. So, the system can be seen not only as a tool for solving problems by reducing them to SAT, but also as a general-purpose constraint solving system (for finite domains). In this paper, we also describe an open-source implementation of the described approach. The performed experiments suggest that the system is competitive to state-of-the-art related modelling systems.
A major challenge in consumer credit risk portfolio management is to classify households according to their risk profile. In order to build such risk profiles it is necessary to employ an approach that analyses data systematically in order to detect important relationships, interactions, dependencies and associations amongst the available continuous and categorical variables altogether and accurately generate profiles of most interesting household segments according to their credit risk. The objective of this work is to employ a knowledge discovery from database process to identify groups of indebted households and describe their profiles using a database collected by the Consumer Credit Counselling Service (CCCS) in the UK. Employing a framework that allows the usage of both categorical and continuous data altogether to find hidden structures in unlabelled data it was established the ideal number of clusters and such clusters were described in order to identify the households who exhibit a high propensity of excessive debt levels.
Many technical approaches have been proposed for ensuring that decisions made by machine learning systems are fair, but few of these proposals have been stress-tested in real-world systems. This paper presents an example of one teams approach to the challenge of applying algorithmic fairness approaches to complex production systems within the context of a large technology company. We discuss how we disentangle normative questions of product and policy design (like, how should the system trade off between different stakeholders interests and needs?) from empirical questions of system implementation (like, is the system achieving the desired tradeoff in practice?). We also present an approach for answering questions of the latter sort, which allows us to measure how machine learning systems and human labelers are making these tradeoffs across different relevant groups. We hope our experience integrating fairness tools and approaches into large-scale and complex production systems will be useful to other practitioners facing similar challenges, and illuminating to academics and researchers looking to better address the needs of practitioners.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا