ﻻ يوجد ملخص باللغة العربية
We study numerical approaches to computation of spectral properties of composition operators. We provide a characterization of Koopman Modes in Banach spaces using Generalized Laplace Analysis. We cast the Dynamic Mode-Decomposition type methods in the context of Finite Section theory of infinite dimensional operators, and provide an example of a mixing map for which the finite section method fails. Under assumptions on the underlying dynamics, we provide the first result on the convergence rate under sample size increase in the finite-section approximation. We study the error in the Krylov subspace version of the finite section method and prove convergence in pseudospectral sense for operators with pure point spectrum. This result indicates that Krylov sequence-based approximations can have low error without an exponential-in-dimension increase in the number of functions needed for approximation.
We analyze the performance of Dynamic Mode Decomposition (DMD)-based approximations of the stochastic Koopman operator for random dynamical systems where either the dynamics or observables are affected by noise. Under certain ergodicity assumptions,
We provide a framework for learning of dynamical systems rooted in the concept of representations and Koopman operators. The interplay between the two leads to the full description of systems that can be represented linearly in a finite dimension, ba
Starting from measured data, we develop a method to compute the fine structure of the spectrum of the Koopman operator with rigorous convergence guarantees. The method is based on the observation that, in the measure-preserving ergodic setting, the m
This paper proposes Koopman operator theory and the related algorithm dynamical mode decomposition (DMD) for analysis and control of signalized traffic flow networks. DMD provides a model-free approach for representing complex oscillatory dynamics fr
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we