ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana modes in emergent-wire phases of helical and cycloidal magnet-superconductor hybrids

144   0   0.0 ( 0 )
 نشر من قبل Stefan Rex
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Noncollinear magnetism opens exciting possibilities to generate topological superconductivity. Here, we focus on helical and cycloidal magnetic textures in magnet-superconductor hybrid structures in a background magnetic field. We demonstrate that this system can enter a topological phase which can be understood as a set of parallel topological wires. We explore and confirm this idea in depth with three different approaches: a continuum model, a tight-binding model based on the magnetic unit cell, and exact diagonalization on a finite two-dimensional lattice. The key signature of this topological state is the presence of Majorana bound states at certain disclination defects in the magnetic texture. Based on the $C_2$ symmetry imposed by the helical or cycloidal texture, we employ the theory of topological crystalline superconductors with rotation invariants to obtain the Majorana parity at disclinations. Furthermore, we consider a 90-degree helimagnet domain wall, which is formed by a string of alternating disclinations. We discuss how the resulting chain of disclination bound states hybridizes into two chiral modes with different velocities. We suggest that hybrid systems of chiral magnets and superconductors are capable of hosting Majorana modes in various spatial configurations with potentially far less nano-engineering than in, e.g., semiconductor wires.



قيم البحث

اقرأ أيضاً

Magnet-superconductor hybrid (MSH) systems represent promising platforms to host Majorana zero modes (MZMs), the elemental building blocks for fault-tolerant quantum computers. Theoretical description of such MSH structures is mostly based on simplif ied models, not accounting for the complexity of real materials. Here, based on density functional theory, we derive an effective superconducting 80-band model to study an MSH system consisting of a magnetic manganese chain on the $s$ wave superconductor niobium. For a wide range of values of the superconducting order parameter, the system is a topological superconductor, with MZMs exhibiting non-universal spatial patterns and a drastic accumulation of spectral weight on both sides along the magnetic chain. Performing scanning tunneling spectroscopy experiments on the same system, we observe a spatial structure in the low-energy local density of states that is consistent with the theoretical results. Our results open a first-principle approach to the discovery of topological superconductors.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
101 - Takuto Kawakami , Xiao Hu 2015
We investigate one-dimensional (1D) Majorana bound states (MBSs) realized in terms of the helical edge states of a 2D quantum spin-Hall insulator (QSHI) in a heterostructure with a superconducting substrate and two ferromagnetic insulators (FIs). By means of Bogoliubov-de Gennes approach we demonstrate that there is a helical spin texture in the MBS wave function with a pitch proportional to the Fermi momentum of the helical edge states of QSHI. Moreover, simultaneous detection on local density of states by scanning tunneling microscopy and spectroscopy at a position close to one FI edge and at the midpoint between two FIs can not only map out the energy spectrum $pm E cos(phi/2)$, but also prove experimentally that the two quasiparticle excitations do not mix with each other as protected by the parity conservation associated with the MBSs.
We investigate the nucleation of superconductivity in a superconducting Al strip under the influence of the magnetic field generated by a current-carrying Nb wire, perpendicularly oriented and located underneath the strip. The inhomogeneous magnetic field, induced by the Nb wire, produces a spatial modulation of the critical temperature T_c, leading to a controllable localization of the superconducting order parameter (OP) wave function. We demonstrate that close to the phase boundary T_c(B_ext) the localized OP solution can be displaced reversibly by either applying an external perpendicular magnetic field B_ext or by changing the amplitude of the inhomogeneous field.
64 - Martin Mootz , Jigang Wang , 2020
We present a gauge-invariant density matrix description of non-equilibrium superconductor (SC) states with spatial and temporal correlations driven by intense terahertz (THz) lightwaves. We derive superconductor Bloch--Maxwell equations of motion tha t extend Anderson pseudo-spin models to include the Cooper pair center-of-mass motion and electromagnetic propagation effects. We thus describe quantum control of dynamical phases, collective modes, quasi-particle coherence, and high nonlinearities during cycles of carrier wave oscillations, which relate to our recent experiments. Coherent photogeneration of a nonlinear supercurrent with dc component via condensate acceleration by an effective lightwave field dynamically breaks the equilibrium inversion symmetry. Experimental signatures include high harmonic light emission at equilibrium-symmetry-forbidden frequencies, Rabi--Higgs collective modes and quasi-particle coherence, and non-equilibrium moving condensate states tuned by few-cycle THz fields. We use such lightwaves as an oscillating accelerating force that drives strong nonlinearities and anisotropic quasi-particle populations to control and amplify different classes of collective modes, e.g., damped oscillations, persistent oscillations, and overdamped dynamics via Rabi flopping. Recent phase-coherent nonlinear spectroscopy experiments can be modeled by solving the full nonlinear quantum dynamics including self-consistent light--matter coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا