ﻻ يوجد ملخص باللغة العربية
We classify regularity for a class of Lagrangian mean curvature type equations, which includes the potential equation for prescribed Lagrangian mean curvature and those for Lagrangian mean curvature flow self-shrinkers and expanders, translating solitons, and rotating solitons. We first show that convex viscosity solutions are regular provided the Lagrangian angle or phase is $C^2$ and convex in the gradient variable. We next show that for merely Holder continuous phases, convex solutions are regular if they are $C^{1,beta}$ for sufficiently large $beta$. Singular solutions are given to show that each condition is optimal and that the Holder exponent is sharp. Along the way, we generalize the constant rank theorem of Bian and Guan to include arbitrary dependence on the Legendre transform.
We show that convex viscosity solutions of the Lagrangian mean curvature equation are regular if the Lagrangian phase has Holder continuous second derivatives.
In this paper, we derive a priori interior Hessian estimates for Lagrangian mean curvature equation if the Lagrangian phase is supercritical and has bounded second derivatives.
In this paper, we solve the Dirichlet problem with continuous boundary data for the Lagrangian mean curvature equation on a uniformly convex, bounded domain in $mathbb{R}^n$.
We studied the asymptotic behavior of solutions with quadratic growth condition of a class of Lagrangian mean curvature equations $F_{tau}(lambda(D^2u))=f(x)$ in exterior domain, where $f$ satisfies a given asymptotic behavior at infinity. When f(x)
Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the p