ﻻ يوجد ملخص باللغة العربية
Unstructured data is now commonly queried by using target deep neural networks (DNNs) to produce structured information, e.g., object types and positions in video. As these target DNNs can be computationally expensive, recent work uses proxy models to produce query-specific proxy scores. These proxy scores are then used in downstream query processing algorithms for improved query execution speeds. Unfortunately, proxy models are often trained per-query, require large amounts of training data from the target DNN, and new training methods per query type. In this work, we develop an index construction method (task-agnostic semantic trainable index, TASTI) that produces reusable embeddings that can be used to generate proxy scores for a wide range of queries, removing the need for query-specific proxies. We observe that many queries over the same dataset only require access to the schema induced by the target DNN. For example, an aggregation query counting the number of cars and a selection query selecting frames of cars require only the object types per frame of video. To leverage this opportunity, TASTI produces embeddings per record that have the key property that close embeddings have similar extracted attributes under the induced schema. Given this property, we show that clustering by embeddings can be used to answer downstream queries efficiently. We theoretically analyze TASTI and show that low training error guarantees downstream query accuracy for a natural class of queries. We evaluate TASTI on four video and text datasets, and three query types. We show that TASTI can be 10x less expensive to construct than proxy models and can outperform them by up to 24x at query time.
Cardinality estimation is a fundamental problem in database systems. To capture the rich joint data distributions of a relational table, most of the existing work either uses data as unsupervised information or uses query workload as supervised infor
Scanning and filtering over multi-dimensional tables are key operations in modern analytical database engines. To optimize the performance of these operations, databases often create clustered indexes over a single dimension or multi-dimensional inde
In visual exploration and analysis of data, determining how to select and transform the data for visualization is a challenge for data-unfamiliar or inexperienced users. Our main hypothesis is that for many data sets and common analysis tasks, there
Natural language is perhaps the most flexible and intuitive way for humans to communicate tasks to a robot. Prior work in imitation learning typically requires each task be specified with a task id or goal image -- something that is often impractical
There is great excitement about learned index structures, but understandable skepticism about the practicality of a new method uprooting decades of research on B-Trees. In this paper, we work to remove some of that uncertainty by demonstrating how a