ﻻ يوجد ملخص باللغة العربية
We use a Langevin dynamics approach to map out the thermal phases of an antiferromagnetic Mott insulator pushed out of equilibrium by a large voltage bias. The Mott insulator is realised in the half-filled Hubbard model in a three dimensional bar geometry with leads at voltage $pm V/2$ connected at the two ends. We decouple the strong Hubbard interaction via the combination of an auxiliary vector field, to capture magnetic fluctuations, and a homogeneous scalar field to maintain half-filling. The magnetic fluctuations are assumed to be slow on electronic timescales. At zero temperature our method reduces to Keldysh mean field theory and yields a voltage driven insulator-metal transition with hysteresis. The Langevin scheme generalises this, allowing us to study the finite temperature nonequilibrium steady state. We find an initially slow and then progressively rapid suppression of the Neel temperature $T_{N}$ and pseudogap temperature $T_{pg}$ with bias, and discover that the bias leads to a finite temperature insulator-metal transition. We explain the thermal results in terms of strong amplitude fluctuation of the local moments in the first order landscape.
We develop a real space theory of the voltage bias driven transition from a Mott insulator to a correlated metal. Within our Keldysh mean field approach the problem reduces to a self-consistency scheme for the charge and spin profiles in this open sy
We present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca$_3$Ru$_2$O$_7$. Such an insulator-metal transition is accompanie
We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a constant electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium mean-field analysis of a driven-dissipative anti-fe
We define, compute and analyze the nonequilibrium differential optical conductivity of the one-dimensional extended Hubbard model at half-filling after applying a pump pulse, using the time-dependent density matrix renormalization group method. The m
Metal-insulator transitions (MIT) belong to a class of fascinating physical phenomena, which includes superconductivity, and colossal magnetoresistance (CMR), that are associated with drastic modifications of electrical resistance. In transition meta