ﻻ يوجد ملخص باللغة العربية
As several new spectrum bands are opening up for shared use, a new paradigm of textit{Diverse Band-aware Dynamic Spectrum Access} (d-DSA) has emerged. d-DSA equips a secondary device with software defined radios (SDRs) and utilize whitespaces (or idle channels) in textit{multiple bands}, including but not limited to TV, LTE, Citizen Broadband Radio Service (CBRS), unlicensed ISM. In this paper, we propose a decentralized, online multi-agent reinforcement learning based cross-layer BAnd selection and Routing Design (BARD) for such d-DSA networks. BARD not only harnesses whitespaces in multiple spectrum bands, but also accounts for unique electro-magnetic characteristics of those bands to maximize the desired quality of service (QoS) requirements of heterogeneous message packets; while also ensuring no harmful interference to the primary users in the utilized band. Our extensive experiments demonstrate that BARD outperforms the baseline dDSAaR algorithm in terms of message delivery ratio, however, at a relatively higher network latency, for varying number of primary and secondary users. Furthermore, BARD greatly outperforms its single-band DSA variants in terms of both the metrics in all considered scenarios.
A cross-layer cognitive radio system is designed to support unicast and multicast traffic with integration of dynamic spectrum access (DSA), backpressure algorithm, and network coding for multi-hop networking. The full protocol stack that operates wi
Localization in long-range Internet of Things networks is a challenging task, mainly due to the long distances and low bandwidth used. Moreover, the cost, power, and size limitations restrict the integration of a GPS receiver in each device. In this
A novel and compact dual band planar antenna for 2.4/5.2/5.8-GHz wireless local area network(WLAN) applications is proposed and studied in this paper. The antenna comprises of a T-shaped and a F-shaped element to generate two resonant modes for dual
The underwater acoustic channel is one of the most challenging communication channels. Due to periodical tidal and daily climatic variation, underwater noise is periodically fluctuating, which result in the periodical changing of acoustic channel qua
MPTCP is a new transport protocol that enables mobile devices to use multiple physical paths simultaneously through several network interfaces, such as WiFi and Cellular. However, wireless path capacities change frequently in the mobile environments,