ﻻ يوجد ملخص باللغة العربية
Network reliability is an important metric to evaluate the connectivity among given vertices in uncertain graphs. Since the network reliability problem is known as #P-complete, existing studies have used approximation techniques. In this paper, we propose a new sampling-based approach that efficiently and accurately approximates network reliability. Our approach improves efficiency by reducing the number of samples based on stratified sampling. We theoretically guarantee that our approach improves the accuracy of approximation by using lower and upper bounds of network reliability, even though it reduces the number of samples. To efficiently compute the bounds, we develop an extended BDD, called S2BDD. During constructing the S2BDD, our approach employs dynamic programming for efficiently sampling possible graphs. Our experiment with real datasets demonstrates that our approach is up to 51.2 times faster than the existing sampling-based approach with higher accuracy.
Like [1], we present an algorithm to compute the simulation of a query pattern in a graph of labeled nodes and unlabeled edges. However, our algorithm works on a compressed graph grammar, instead of on the original graph. The speed-up of our algorith
A visibility algorithm maps time series into complex networks following a simple criterion. The resulting visibility graph has recently proven to be a powerful tool for time series analysis. However its straightforward computation is time-consuming a
We study the {em Budgeted Dominating Set} (BDS) problem on uncertain graphs, namely, graphs with a probability distribution $p$ associated with the edges, such that an edge $e$ exists in the graph with probability $p(e)$. The input to the problem con
Uncertain graphs have been widely used to model complex linked data in many real-world applications, such as guaranteed-loan networks and power grids, where a node or edge may be associated with a probability. In these networks, a node usually has a
Recently, great efforts have been dedicated to researches on the management of large scale graph based data such as WWW, social networks, biological networks. In the study of graph based data management, node disjoint subgraph homeomorphism relation