Recently, new physics for unconditional security in a classical key distribution (USCKD) in a frame of a double Mach-Zehnder interferometer has been proposed and demonstrated as a proof of principle, where the unconditional security is unaffected by the no-cloning theorem of quantum key distribution protocols. Due to environmental phase fluctuations caused by temperature variations, atmospheric turbulences, or mechanical vibrations, active phase locking seems to be necessary for the two-channel transmission layout of USCKD. Here, the two-channel layout of USCKD is demonstrated to be an environmental noise-immune protocol especially for free space optical links, where the transmission distance is potentially unlimited if random phase noises are considered.