ﻻ يوجد ملخص باللغة العربية
The charmonium states with their different binding energies and radii dissolve at different temperatures of the medium produced in relativistic heavy-ion collisions. Relative yields of charmonium and thus their survival have potential to map the properties of Quark Gluon Plasma. In this study, we estimate the combined effect of color screening, gluon-induced dissociation and recombination on charmonium production in heavy-ion collisions (Pb+Pb ions) at centre of mass energy ($sqrt{s_{rm NN}}$) = 5.02 TeV. The rate equations of dissociation and recombination are solved separately with a 2-dimensional accelerated expansion of fireball volume. To solve the recombination rate equation, we have used an approach of Bateman solution which ensures the dissociation of the recombined charmonium in the QGP medium. The modifications of charmonium states are estimated in an expanding QGP with the conditions relevant for Pb+Pb collisions at LHC.
Charmonium production at heavy-ion colliders is considered within the comovers interaction model. The formalism is extended by including possible secondary J/psi production through recombination and an estimate of recombination effects is made with n
The dissociation of heavy quarkonia in the constrained space is calculated at leading order compared with that in infinitely large medium. To deal with the summation of the discrete spectrum, a modified Euler-Maclaurin formula is developed as our num
This paper investigates the transverse momentum broadening effect for electromagnetic production of dileptons in ultra-peripheral heavy ion collisions accompanied by nuclear dissociation. The electromagnetic dissociation probability of nuclei for dif
The probability of the formation and decay of a dinuclear system is investigated for a wide range of relative orbital angular momentum values. The mass and angular distributions of the quasifission fragments are studied to understand the reaction mec
The production of light (anti-)(hyper-)nuclei in heavy-ion collisions at the LHC is considered in the framework of the Saha equation, making use of the analogy between the evolution of the early universe after the Big Bang and that of Little Bangs cr