ﻻ يوجد ملخص باللغة العربية
The concept of supersymmetry developed in particle physics has been applied to various fields of modern physics. In quantum mechanics, the supersymmetric systems refer to the systems involving two supersymmetric partner Hamiltonians, whose energy levels are degeneracy except one of the systems has an extra ground state possibly, and the eigenstates of the partner systems can be mapped onto each other. Recently, an interferometric scheme has been proposed to show this relationship in ultracold atoms [Phys. Rev.A 96, 043624 (2017)]. Here this approach is generalized to linear optics for observing the supersymmetric dynamics with photons. The time evolution operator is simulated approximately via Suzuki-Trotter expansion with considering the realization of the kinetic and potential terms separately. The former is realized through the diffraction nature of light and the later is implemented using phase plate. Additionally, we propose an interferometric approach which can be implemented perfectly using amplitude alternator to realize the non-unitary operator. The numerical results show that our scheme is universal and can be realized with current technologies.
Linear-Optical Passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structu
Quantum teleportation plays a key role in modern quantum technologies. Thus, it is of much interest to generate alternative approaches or representations aimed at allowing us a better understanding of the physics involved in the process from differen
The problem of simulating complex quantum processes on classical computers gave rise to the field of quantum simulations. Quantum simulators solve problems, such as Boson sampling, where classical counterparts fail. In another field of physics, the u
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can desi
We consider an Ehrenfest approximation for a particle in a double-well potential in the presence of an external environment schematized as a finite resource heat bath. This allows us to explore how the limitations in the applicability of Ehrenfest dy