ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray linear dichroic ptychography

85   0   0.0 ( 0 )
 نشر من قبل Jianwei Miao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Biominerals such as seashells, corals skeletons, bone, and enamel are optically anisotropic crystalline materials with unique nano- and micro-scale organization that translates into exceptional macroscopic mechanical properties, providing inspiration for engineering new and superior biomimetic structures. Here we use particles of Seriatopora aculeata coral skeleton as a model and demonstrate, for the first time, x-ray linear dichroic ptychography. We map the aragonite (CaCO3) crystal c-axis orientations in coral skeleton with 35 nm spatial resolution. Linear dichroic phase imaging at the O K-edge energy shows strong polarization-dependent contrast and reveals the presence of both narrow (< 35{deg}) and wide (> 35{deg}) c-axis angular spread in sub-micrometer coral particles. These x-ray ptychography results were corroborated using 4D scanning transmission electron nano-diffraction on the same particles. Evidence of co-oriented but disconnected corallite sub-domains indicates jagged crystal boundaries consistent with formation by amorphous nanoparticle attachment. Looking forward, we anticipate that x-ray linear dichroic ptychography can be applied to study nano-crystallites, interfaces, nucleation and mineral growth of optically anisotropic materials with sub-ten nanometers spatial resolution in three dimensions.



قيم البحث

اقرأ أيضاً

Linear-dichroism is an important tool to characterize the transmission matrix and determine the crystal or orbital orientation in a material. In order to gain high resolution mapping of the transmission properties of such materials, we introduce the linear-dichroism scattering model in ptychographic imaging, and then develop an efficient two-stage reconstruction algorithm. Using proposed algorithm, the dichroic transmission matrix without an analyzer can be recovered by using ptychography measurements with as few as three different polarization angles, with the help of an empty region to remove phase ambiguities.
Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have up to now been unable to probe 3D micrometer-s ized systems with nanoscale resolution. Here we present the imaging of the magnetic domain configuration of a micrometre-thick FeGd multilayer with hard X-ray dichroic ptychography at energies spanning both the Gd L3 edge and the Fe K edge, providing a high spatial resolution spectroscopic analysis of the complex X-ray magnetic circular dichroism. With a spatial resolution reaching 45 nm, this advance in hard X-ray magnetic imaging is the first step towards the investigation of buried magnetic structures and extended three-dimensional magnetic systems at the nanoscale.
With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.
X-ray Raman spectra of liquid, sub- and super- critical water at the oxygen K-edge were measured, at densities 1.02 - 0.16 gcm^-3. Measurements were made along both an isotherm and an isochore passing near the critical point. As density is reduced th ere is a general tendency of the spectra to increasingly resemble that of the vapor phase, with, first, a well separated low-energy peak, and, eventually, at densities below the critical density, peaks appearing at higher energies corresponding to molecular transitions. The critical point itself is distinguished by a local maximum in the contrast between some of the spectroscopic features. The results are compared to computed X-ray absorption spectra of supercritical water.
The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by s ignificant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا