ﻻ يوجد ملخص باللغة العربية
The recent proposal of non-Abelian boson-fermion dualities in 2+1 dimensions, which morally relate $U(k)_N$ to $SU(N)_{-k}$ Chern-Simons-matter theories, presents a new platform for exploring the landscape of non-Abelian quantum Hall states accessible from theories of Abelian composite particles. Here we focus on dualities relating theories of Abelian quantum Hall states of bosons or fermions to theories of non-Abelian composite fermions partially filling Landau levels. We show that these dualities predict special filling fractions where both Abelian and non-Abelian composite fermion theories appear capable of hosting distinct topologically ordered ground states, one Abelian and the other a non-Abelian, $U(k)_2$ Blok-Wen state. Rather than being in conflict with the duality, we argue that these results indicate unexpected dynamics in which the infrared and lowest Landau level limits fail to commute across the duality. In such a scenario, the non-Abelian topological order can be destabilized in favor of the Abelian ground state, suggesting the presence of a phase transition between the Abelian and non-Abelian states that is likely to be first order. We also generalize these constructions to other non-Abelian fermion-fermion dualities, in the process obtaining new derivations of a variety of paired composite fermion phases using duality, including the anti-Pfaffian state. Finally, we describe how, in multilayer constructions, excitonic pairing of the composite fermions across $N$ layers can also generate the family of Blok-Wen states with $U(k)_2$ topological order.
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be m
We investigate the nature of the fractional quantum Hall (FQH) state at filling factor $ u=13/5$, and its particle-hole conjugate state at $12/5$, with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scal
Quantum Hall matrix models are simple, solvable quantum mechanical systems which capture the physics of certain fractional quantum Hall states. Recently, it was shown that the Hall viscosity can be extracted from the matrix model for Laughlin states.
The nature of the state at low Landau-level filling factors has been a longstanding puzzle in the field of the fractional quantum Hall effect. While theoretical calculations suggest that a crystal is favored at filling factors $ ulesssim 1/6$, experi
The Fibonacci topological order is the simplest platform for a universal topological quantum computer, consisting of a single type of non-Abelian anyon, $tau$, with fusion rule $tautimestau=1+tau$. While it has been proposed that the anyon spectrum o