ﻻ يوجد ملخص باللغة العربية
We introduce a new method to continuously map inhomogeneities of a moire lattice and apply it to large-area topographic images we measure on open-device twisted bilayer graphene (TBG). We show that the variation in the twist angle of a TBG device, which is frequently conjectured to be the reason for differences between devices with a supposed similar twist angle, is about 0.08{deg} around the average of 2.02{deg} over areas of several hundred nm, comparable to devices encapsulated between hBN slabs. We distinguish between an effective twist angle and local anisotropy and relate the latter to heterostrain. Our results imply that for our devices, twist angle heterogeneity has a roughly equal effect to the electronic structure as local strain. The method introduced here is applicable to results from different imaging techniques, and on different moire materials.
Twisted bilayer graphene (tBLG) forms a quasicrystal whose structural and electronic properties depend on the angle of rotation between its layers. Here we present a scanning tunneling microscopy study of gate-tunable tBLG devices supported by atomic
In twisted bilayer graphene (TBG) a moire pattern forms that introduces a new length scale to the material. At the magic twist angle of 1.1{deg}, this causes a flat band to form, yielding emergent properties such as correlated insulator behavior and
The effects of the long range electrostatic interaction in twisted bilayer graphene are described using the Hartree-Fock approximation. The results show a significant dependence of the band widths and shapes on electron filling, and the existence of
Twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (h-BN) substrate can exhibit an anomalous Hall effect at 3/4 filling due to the spontaneous valley polarization in valley resolved moire bands with opposite Chern number [Science 367
Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emerge