ترغب بنشر مسار تعليمي؟ اضغط هنا

Biased Opinion Dynamics: When the Devil Is in the Details

81   0   0.0 ( 0 )
 نشر من قبل Emilio Cruciani
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate opinion dynamics in multi-agent networks when a bias toward one of two possible opinions exists; for example, reflecting a status quo vs a superior alternative. Starting with all agents sharing an initial opinion representing the status quo, the system evolves in steps. In each step, one agent selected uniformly at random adopts the superior opinion with some probability $alpha$, and with probability $1 - alpha$ it follows an underlying update rule to revise its opinion on the basis of those held by its neighbors. We analyze convergence of the resulting process under two well-known update rules, namely majority and voter. The framework we propose exhibits a rich structure, with a non-obvious interplay between topology and underlying update rule. For example, for the voter rule we show that the speed of convergence bears no significant dependence on the underlying topology, whereas the picture changes completely under the majority rule, where network density negatively affects convergence. We believe that the model we propose is at the same time simple, rich, and modular, affording mathematical characterization of the interplay between bias, underlying opinion dynamics, and social structure in a unified setting.



قيم البحث

اقرأ أيضاً

In this paper we show that by carefully making good choices for various detailed but important factors in a visual recognition framework using deep learning features, one can achieve a simple, efficient, yet highly accurate image classification syste m. We first list 5 important factors, based on both existing researches and ideas proposed in this paper. These important detailed factors include: 1) $ell_2$ matrix normalization is more effective than unnormalized or $ell_2$ vector normalization, 2) the proposed natural deep spatial pyramid is very effective, and 3) a very small $K$ in Fisher Vectors surprisingly achieves higher accuracy than normally used large $K$ values. Along with other choices (convolutional activations and multiple scales), the proposed DSP framework is not only intuitive and efficient, but also achieves excellent classification accuracy on many benchmark datasets. For example, DSPs accuracy on SUN397 is 59.78%, significantly higher than previous state-of-the-art (53.86%).
By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On the one hand, this is desirable as it treats all classes, rare to frequent, equally. On the oth er hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, we find that on imbalanced, large-vocabulary datasets, the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that the default implementation produces a gameable metric, where a simple, nonsensical re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is truly independent across categories as originally intended. We benchmark recent advances in large-vocabulary detection and find that many reported gains do not translate to improvements under our new per-class independent evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-pool by 1.7 points.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
141 - Peter Duggins 2014
Agent-based models are versatile tools for studying how societal opinion change, including political polarization and cultural diffusion, emerges from individual behavior. This study expands agents psychological realism using empirically-motivated ru les governing interpersonal influence, commitment to previous beliefs, and conformity in social contexts. Computational experiments establish that these extensions produce three novel results: (a) sustained strong diversity of opinions within the population, (b) opinion subcultures, and (c) pluralistic ignorance. These phenomena arise from a combination of agents intolerance, susceptibility and conformity, with extremist agents and social networks playing important roles. The distribution and dynamics of simulated opinions reproduce two empirical datasets on Americans political opinions.
Modern technology has drastically changed the way we interact and consume information. For example, online social platforms allow for seamless communication exchanges at an unprecedented scale. However, we are still bounded by cognitive and temporal constraints. Our attention is limited and extremely valuable. Algorithmic personalisation has become a standard approach to tackle the information overload problem. As result, the exposure to our friends opinions and our perception about important issues might be distorted. However, the effects of algorithmic gatekeeping on our hyper-connected society are poorly understood. Here, we devise an opinion dynamics model where individuals are connected through a social network and adopt opinions as function of the view points they are exposed to. We apply various filtering algorithms that select the opinions shown to users i) at random ii) considering time ordering or iii) their current beliefs. Furthermore, we investigate the interplay between such mechanisms and crucial features of real networks. We found that algorithmic filtering might influence opinions share and distributions, especially in case information is biased towards the current opinion of each user. These effects are reinforced in networks featuring topological and spatial correlations where echo chambers and polarisation emerge. Conversely, heterogeneity in connectivity patterns reduces such tendency. We consider also a scenario where one opinion, through nudging, is centrally pushed to all users. Interestingly, even minimal nudging is able to change the status quo moving it towards the desired view point. Our findings suggest that simple filtering algorithms might be powerful tools to regulate opinion dynamics taking place on social networks
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا