ترغب بنشر مسار تعليمي؟ اضغط هنا

E-series of character varieties of non-orientable surfaces

112   0   0.0 ( 0 )
 نشر من قبل Emmanuel Letellier
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we are interested in two kinds of (stacky) character varieties associated to a compact non-orientable surface. (A) We consider the quotient stack of the space of representations of the fundamental group of this surface to GL(n). (B) We choose a set of k-punctures on the surface and a generic k-tuple of semisimple conjugacy classes of GL(n), and we consider the stack of anti-invariant local systems on the orientation cover of the surface with local monodromies around the punctures given by the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields from which we get a formula for their E-series (a certain specialization of the mixed Poincare series). In case (B) we give a conjectural formula for the full mixed Poincare series.



قيم البحث

اقرأ أيضاً

In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the punctures. We proved several results which support this conjecture. Here we announce new results which are consequences of those of arXiv:0810.2076.
We present a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a Riemann surface of genus g to GL_n(C) w ith fixed generic semi-simple conjugacy classes at k punctures. Using the character table of GL_n(F_q) we calculate the E-polynomial of these character varieties and confirm that it is as predicted by our main conjecture. Then, using the character table of gl_n(F_q), we calculate the E-polynomial of certain associated comet-shaped quiver varieties, the additive analogues of our character variety, and find that it is the pure part of our conjectured mixed Hodge polynomial. Finally, we observe that the pure part of our conjectured mixed Hodge polynomial also equals certain multiplicities in the tensor product of irreducible representations of GL_n(F_q). This implies a curious connection between the representation theory of GL_n(F_q) and Kac-Moody algebras associated with comet-shaped, typically wild, quivers.
We study connections between the topology of generic character varieties of fundamental groups of punctured Riemann surfaces, Macdonald polynomials, quiver representations, Hilbert schemes on surfaces, modular forms and multiplicities in tensor produ cts of irreducible characters of finite general linear groups.
This paper defines and studies permutation representations on the equivariant cohomology of Schubert varieties, as representations both over C and over C[t_1, t_2,...,t_n]. We show these group actions are the same as an action of simple transposition s studied geometrically by M. Brion, and give topological meaning to the divided difference operators studied by Berstein-Gelfand-Gelfand, Demazure, Kostant-Kumar, and others. We analyze these representations using the combinatorial approach to equivariant cohomology introduced by Goresky-Kottwitz-MacPherson. We find that each permutation representation on equivariant cohomology produces a representation on ordinary cohomology that is trivial, though the equivariant representation is not.
This paper concerns character sheaves of connected reductive algebraic groups defined over non-Archimedean local fields and their relation with characters of smooth representations. Although character sheaves were devised with characters of represent ations of finite groups of Lie type in mind, character sheaves are perfectly well defined for reductive algebraic groups over any algebraically closed field. Nevertheless, the relation between character sheaves of an algebraic group $G$ over an algebraic closure of a field $K$ and characters of representations of $G(K)$ is well understood only when $K$ is a finite field and when $K$ is the field of complex numbers. In this paper we consider the case when $K$ is a non-Archimedean local field and explain how to match certain character sheaves of a connected reductive algebraic group $G$ with virtual representations of $G(K)$. In the final section of the paper we produce examples of character sheaves of general linear groups and matching admissible virtual representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا