ﻻ يوجد ملخص باللغة العربية
We consider a sparse linear regression model with unknown symmetric error under the high-dimensional setting. The true error distribution is assumed to belong to the locally $beta$-H{o}lder class with an exponentially decreasing tail, which does not need to be sub-Gaussian. We obtain posterior convergence rates of the regression coefficient and the error density, which are nearly optimal and adaptive to the unknown sparsity level. Furthermore, we derive the semi-parametric Bernstein-von Mises (BvM) theorem to characterize asymptotic shape of the marginal posterior for regression coefficients. Under the sub-Gaussianity assumption on the true score function, strong model selection consistency for regression coefficients are also obtained, which eventually asserts the frequentists validity of credible sets.
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the m
We discuss the possibilities and limitations of estimating the mean of a real-valued random variable from independent and identically distributed observations from a non-asymptotic point of view. In particular, we define estimators with a sub-Gaussia
In this paper we discuss the estimation of a nonparametric component $f_1$ of a nonparametric additive model $Y=f_1(X_1) + ...+ f_q(X_q) + epsilon$. We allow the number $q$ of additive components to grow to infinity and we make sparsity assumptions a
Bayesian methods are actively used for parameter identification and uncertainty quantification when solving nonlinear inverse problems with random noise. However, there are only few theoretical results justifying the Bayesian approach. Recent papers,
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I