ترغب بنشر مسار تعليمي؟ اضغط هنا

AzTEC Survey of the Central Molecular Zone: Data Reduction, Analysis, and Preliminary Results

80   0   0.0 ( 0 )
 نشر من قبل Yuping Tang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a large-scale survey of the central molecular zone (CMZ) of our Galaxy, as well as a monitoring program of Sgr A*, with the AzTEC/Large Millimeter Telescope (LMT) in the 1.1 mm continuum. Our 1.1 mm map covers the main body of the CMZ over a field of $1.6 times 1.1$ deg$^2$ with an angular resolution of $10.5$ and a depth of 15 mJy/beam. To account for the intensity loss due to the background removal process, we combine this map with lower resolution CSO/Bolocam and textit{Planck}/HFI data to produce an effective full intensity 1.1 mm continuum map. With this map and existing textit{Herschel} surveys, we have carried out a comprehensive analysis of the spectral energy distribution (SED) of dust in the CMZ. A key component of this analysis is the implementation of a model-based deconvolution approach, incorporating the Point Spread Functions (PSFs) of the different instruments, and hence recovering a significant amount of spatial information on angular scales larger than $10.5$. The monitoring of Sgr A* was carried out as part of a worldwide, multi-wavelength campaign when the so-called G2 object was undergoing the pericenter passage around the massive black hole (MBH). Our preliminary results include 1) high-resolution maps of column density, temperature and dust spectral index across the CMZ; 2) a 1.1~mm light curve of Sgr A* showing an outburst of $140%$ maximum amplitude on 9th May, 2014 but otherwise only stochastic variations of $10%$ and no systematic long-term change, consistent with other observations.



قيم البحث

اقرأ أيضاً

The Central Molecular Zone (CMZ) of our Galaxy hosts an extreme environment analogous to that found in typical starburst galaxies in the distant universe. In order to understand dust properties in environments like our CMZ, we present results from a joint SED analysis of our AzTEC/Large Millimeter Telescope survey, together with existing textit{Herschel} far-IR data on the CMZ, from a wavelength range of $160$ $mu m$ to $1.1$ $mm$. We include global foreground and background contributions in a novel Bayesian modeling that incorporates the Point Spread Functions (PSFs) of the different maps, which enables the full utilization of our high resolution ($10.5$) map at 1.1 $mm$ and reveals unprecedentedly detailed information on the spatial distribution of dusty gas across the CMZ. There is a remarkable trend of increasing dust spectral index $beta$, from $2.0-2.4$, toward dense peaks in the CMZ, indicating a deficiency of large grains or a fundamental change in dust optical properties. This environmental dependence of $beta$ could have a significant impact on the determination of dust temperature in other studies. Depending on how the optical properties of dust deviate from the conventional model, dust temperatures could be underestimated by $10-50%$ in particularly dense regions.
The Central Molecular Zone (CMZ) spans the inner ~450 pc (3 degrees) of our Galaxy. This region is defined by its enhanced molecular emission and contains 5% of the entire Galaxys molecular gas mass. However, the number of detected star forming sites towards the CMZ may be low for the amount of molecular gas that is present, and improved surveys of star formation indicators can help clarify this. With the Karl G Jansky Very Large Array (VLA), we conducted a blind survey of 6.7 GHz methanol masers spanning the inner 3deg x 40arcmin (450 pc x 100 pc) of the Galaxy. We detected 43 methanol masers towards 28 locations, 16 of which are new detections. The velocities of most of these masers are consistent with being located within the CMZ. A majority of the detected methanol masers are distributed towards positive Galactic longitudes, similar to 2/3 of the molecular gas mass distributed at positive Galactic longitudes. The 6.7 GHz methanol maser is an excellent indicator of high mass (>8 solar mass) star formation, with new detections indicating sites of massive star formation in the CMZ.
The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at $sim 0.9$ pc spatial and $sim 2.0$ km s$^{-1}$ spectral resolution. In this paper, we present data on the inner $sim 250$ pc ($1.4^circ$) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of $8-16$ km s$^{-1}$ and extended regions of optically thick ($tau > 1$) emission. Two components in kinetic temperature are detected at $25-50$ K and $60-100$ K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between $sim 50$ and $sim 100$ K Myr$^{-1}$ along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase.
512 - K. S. Scott 2008
We present a 1.1 mm wavelength imaging survey covering 0.3 sq. deg. in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope (JCMT), were centred on a prominent large-scale structure over-density which includes a rich X-ray cluster at z = 0.73. A total of 50 millimetre galaxy candidates, with a significance ranging from 3.5-8.5 sigma, are extracted from the central 0.15 sq. deg. area which has a uniform sensitivity of 1.3 mJy/beam. Sixteen sources are detected with S/N > 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (de-boosted) fluxes > 5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically-obscured stars, then these bright AzTEC sources have FIR luminosities > 6 x 10^12 L(sun) and star formation-rates > 1100 M(sun)/yr. Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger-scale over-density. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterisation of the source catalogue, including the completeness, flux de-boosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte-Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24 micron data and radio data with this AzTEC map of the COSMOS field.
It has been known for more than thirty years that the distribution of molecular gas in the innermost 300 parsecs of the Milky Way, the Central Molecular Zone, is strongly asymmetric. Indeed, approximately three quarters of molecular emission comes fr om positive longitudes, and only one quarter from negative longitudes. However, despite much theoretical effort, the origin of this asymmetry has remained a mystery. Here we show that the asymmetry can be neatly explained by unsteady flow of gas in a barred potential. We use high-resolution 3D hydrodynamical simulations coupled to a state-of-the-art chemical network. Despite the initial conditions and the bar potential being point-symmetric with respect to the Galactic Centre, asymmetries develop spontaneously due to the combination of a hydrodynamical instability known as the wiggle instability and the thermal instability. The observed asymmetry must be transient: observations made tens of megayears in the past or in the future would often show an asymmetry in the opposite sense. Fluctuations of amplitude comparable to the observed asymmetry occur for a large fraction of the time in our simulations, and suggest that the present is not an exceptional moment in the life of our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا