ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotopic ratios in the red giant component of the recurrent nova T Coronae Borealis

70   0   0.0 ( 0 )
 نشر من قبل Nye Evans
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the determination of abundances and isotopic ratios for C, O and Si in the photosphere of the red giant component of the recurrent nova T Coronae Borealis from new 2.284--2.402 $mu$m and 3.985--4.155 $mu$m spectroscopy. Abundances and isotopic ratios in the photosphere may be affected by (i) processes in the red giant interior which are brought to the surface during dredge-up, (ii) contamination of the red giant, either during the common envelope phase of the binary evolution or by material synthesised in recurrent nova eruptions, or a combination of the two. We find that the abundances of C, O and Si are reasonably consistent with the expected composition of a red giant after first dredge-up, as is the $^{16}$O/$^{17}$O ratio. The $^{28}$Si/$^{29}$Si ratio is found to be $8.6pm3.0$, and that for $^{28}$Si/$^{30}$Si is $21.5pm3.0$. The $^{12}$C/$^{13}$C ratio ($10pm2$) is somewhat lower than expected for first dredge-up. The $^{16}$O/$^{18}$O ratio ($41pm3$) is highly inconsistent with that expected either from red giant evolution ($sim550$) or from contamination of the red giant by the products of a nova thermonuclear runaway. In particular the C and O isotopic ratios taken in combination are a puzzle. We urge confirmation of our results using spectroscopy at high resolution. We also encourage a thorough theoretical study of the effects on the secondary star in a recurrent nova system of contamination by ejecta having anomalous abundances and isotopic ratios.



قيم البحث

اقرأ أيضاً

We report the discovery of the diatomic molecule SiO in the gas phase in the environment of the recurrent nova T Coronae Borealis. While some of the SiO is photospheric, a substantial portion must arise in the wind from the red giant component of T C rB. A simple fit to the SiO feature, assuming local thermodynamic equilibrium, suggests a SiO column density of 2.8x10^17 /cm2 and temperature ~1000K; the SiO column density is similar to that present in the winds of field red giants. A search for SiO maser emission is encouraged both before and after the next anticipated eruption. We find that the 12C/13C ratio in the red giant is <9, with a best fit value of ~5, a factor ~18 times lower than the solar value of 89. We find no convincing evidence for the presence of dust in the environment of T CrB, which we attribute to the destructive effects on nucleation sites of hard X-ray emission. When the next eruption of T CrB occurs, the ejected material will shock the wind, producing X-ray and coronal line emission, as is the case for the recurrent nova RS Oph. T CrB is also a good candidate for very high energy gamma-ray emission, as first observed during the 2010 outburst of V407 Cyg. We include in the paper a wide variety of infrared spectroscopic and photometric data.
A sudden increase in the rate at which material reaches the most internal part of an accretion disk, i.e. the boundary layer, can change its structure dramatically. We have witnessed such change for the first time in the symbiotic recurrent nova T Cr B. Our analysis of XMM-Newton, Swift Burst Alert Telescope (BAT)/ X-Ray Telescope (XRT) / UltraViolet Optical Telescope (UVOT) and American Association of Variable Stars Observers (AAVSO) V and B-band data indicates that during an optical brightening event that started in early 2014 ($Delta$ V$approx$1.5): (i) the hard X-ray emission as seen with BAT almost vanished; (ii) the XRT X-ray flux decreased significantly while the optical flux remained high; (iii) the UV flux increased by at least a factor of 40 over the quiescent value; and (iv) the X-ray spectrum became much softer and a bright, new, blackbody-like component appeared. We suggest that the optical brightening event, which could be a similar event to that observed about 8 years before the most recent thermonuclear outburst in 1946, is due to a disk instability
Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic rati os. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do not present clear evidence of a variation with the stellar mass. The observed 16O/18O ratios are clearly lower than the predictions from our reference model. Variations in nuclear reaction rates and mixing length parameter both have only a very weak effect on the predicted values. The 12C/13C ratios of the K giants studied implies the absence of extra-mixing in these objects. Conclusions. A comparison with galactic chemical evolution models indicates that the 16O/18O abundance ratio underwent a faster decrease than predicted. To explain the observed ratios, the most likely scenario is a higher initial 18O abundance combined with a lower initial 16 O abundance. Comparing the measured 18 O/17 O ratio with the corresponding value for the ISM points towards an initial enhancement of 17O as well. Limitations imposed by the observations prevent this from being a conclusive result.
We present near infrared spectroscopy of the recurrent nova RS Oph obtained on several occasions after its latest outburst in 2006 February. The 1-5 mircon spectra are dominated by the red giant, but the H I, He I, and coronal lines present during th e eruption are present in all our observations. From the fits of the computed infrared spectral energy distributions to the observed fluxes we find T_eff=4200+/-200,K for the red giant. The first overtone CO bands at 2.3 micron, formed in the atmosphere of the red giant, are variable. The spectra clearly exhibit an infrared excess due to dust emission longward of 5 micron; we estimate an effective temperature for the emitting dust shell of 500K, and find that the dust emission is also variable, being beyond the limit of detection in 2007. Most likely, the secondary star in RS Oph is intrinsically variable.
137 - Geoffrey C. Clayton 2012
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in th e last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا